Limits...
Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration.

Li J, Li Z, Zhou T, Zhang J, Xia H, Li H, He J, He S, Wang L - Int J Nanomedicine (2015)

Bottom Line: The polymer was successfully synthesized and confirmed using nuclear magnetic resonance and Fourier transform infrared.The drug-loading efficiency and drug-loading content were 75.37% and 3.47%, respectively, which indicates that the polymeric micelles possess a high drug-loading capacity.Positively charged micelles generated from a triblock copolymer are a promising vehicle for the topical delivery of hydrophobic agents in ocular applications.

View Article: PubMed Central - PubMed

Affiliation: Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China.

ABSTRACT

Purpose: The cornea is a main barrier to drug penetration after topical application. The aim of this study was to evaluate the abilities of micelles generated from a positively charged triblock copolymer to penetrate the cornea after topical application.

Methods: The triblock copolymer poly(ethylene glycol)-poly(ε-caprolactone)-g-polyethyleneimine was synthesized, and the physicochemical properties of the self-assembled polymeric micelles were investigated, including hydrodynamic size, zeta potential, morphology, drug-loading content, drug-loading efficiency, and in vitro drug release. Using fluorescein diacetate as a model drug, the penetration capabilities of the polymeric micelles were monitored in vivo using a two-photon scanning fluorescence microscopy on murine corneas after topical application.

Results: The polymer was successfully synthesized and confirmed using nuclear magnetic resonance and Fourier transform infrared. The polymeric micelles had an average particle size of 28 nm, a zeta potential of approximately +12 mV, and a spherical morphology. The drug-loading efficiency and drug-loading content were 75.37% and 3.47%, respectively, which indicates that the polymeric micelles possess a high drug-loading capacity. The polymeric micelles also exhibited controlled-release behavior in vitro. Compared to the control, the positively charged polymeric micelles significantly penetrated through the cornea.

Conclusion: Positively charged micelles generated from a triblock copolymer are a promising vehicle for the topical delivery of hydrophobic agents in ocular applications.

No MeSH data available.


Related in: MedlinePlus

Representative in vivo two-photon microscopy images of corneal cross-sections at 15 min, 30 min, and 60 min after administration of different types of eye drops in C57BL/6 mice.Notes: The administered eye drops were (A) FDA-loaded PCI micelles, (B) FDA nanoparticles, (C) FDA microparticles, and (D) FDA-loaded PEG-PCL micelles (magnification, 100×).Abbreviations: min, minutes; FDA, fluorescein diacetate; PCI, poly(ethylene glycol)-poly(ε-caprolactone)-g-polyethyleneimine; PEG, poly(ethylene glycol); PCL, poly(ε-caprolactone).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4592048&req=5

f6-ijn-10-6027: Representative in vivo two-photon microscopy images of corneal cross-sections at 15 min, 30 min, and 60 min after administration of different types of eye drops in C57BL/6 mice.Notes: The administered eye drops were (A) FDA-loaded PCI micelles, (B) FDA nanoparticles, (C) FDA microparticles, and (D) FDA-loaded PEG-PCL micelles (magnification, 100×).Abbreviations: min, minutes; FDA, fluorescein diacetate; PCI, poly(ethylene glycol)-poly(ε-caprolactone)-g-polyethyleneimine; PEG, poly(ethylene glycol); PCL, poly(ε-caprolactone).

Mentions: When administrating the FDA-loaded polymeric micelle eye drops, deep corneal penetration of the dyes was observed (Figure 6), and the time dependence of the penetration was monitored. Over the first 15 minutes, the penetration of FDA was mostly limited to the epithelial layers of the cornea. However, a strong fluorescent signal corresponding to FDA that spread from the epithelium toward the stromal layers of the cornea was apparent at 30 minutes. By 60 minutes, the fluorescent signal in the stromal layers peaked and was stronger than that in the epithelial layers.


Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration.

Li J, Li Z, Zhou T, Zhang J, Xia H, Li H, He J, He S, Wang L - Int J Nanomedicine (2015)

Representative in vivo two-photon microscopy images of corneal cross-sections at 15 min, 30 min, and 60 min after administration of different types of eye drops in C57BL/6 mice.Notes: The administered eye drops were (A) FDA-loaded PCI micelles, (B) FDA nanoparticles, (C) FDA microparticles, and (D) FDA-loaded PEG-PCL micelles (magnification, 100×).Abbreviations: min, minutes; FDA, fluorescein diacetate; PCI, poly(ethylene glycol)-poly(ε-caprolactone)-g-polyethyleneimine; PEG, poly(ethylene glycol); PCL, poly(ε-caprolactone).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4592048&req=5

f6-ijn-10-6027: Representative in vivo two-photon microscopy images of corneal cross-sections at 15 min, 30 min, and 60 min after administration of different types of eye drops in C57BL/6 mice.Notes: The administered eye drops were (A) FDA-loaded PCI micelles, (B) FDA nanoparticles, (C) FDA microparticles, and (D) FDA-loaded PEG-PCL micelles (magnification, 100×).Abbreviations: min, minutes; FDA, fluorescein diacetate; PCI, poly(ethylene glycol)-poly(ε-caprolactone)-g-polyethyleneimine; PEG, poly(ethylene glycol); PCL, poly(ε-caprolactone).
Mentions: When administrating the FDA-loaded polymeric micelle eye drops, deep corneal penetration of the dyes was observed (Figure 6), and the time dependence of the penetration was monitored. Over the first 15 minutes, the penetration of FDA was mostly limited to the epithelial layers of the cornea. However, a strong fluorescent signal corresponding to FDA that spread from the epithelium toward the stromal layers of the cornea was apparent at 30 minutes. By 60 minutes, the fluorescent signal in the stromal layers peaked and was stronger than that in the epithelial layers.

Bottom Line: The polymer was successfully synthesized and confirmed using nuclear magnetic resonance and Fourier transform infrared.The drug-loading efficiency and drug-loading content were 75.37% and 3.47%, respectively, which indicates that the polymeric micelles possess a high drug-loading capacity.Positively charged micelles generated from a triblock copolymer are a promising vehicle for the topical delivery of hydrophobic agents in ocular applications.

View Article: PubMed Central - PubMed

Affiliation: Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China.

ABSTRACT

Purpose: The cornea is a main barrier to drug penetration after topical application. The aim of this study was to evaluate the abilities of micelles generated from a positively charged triblock copolymer to penetrate the cornea after topical application.

Methods: The triblock copolymer poly(ethylene glycol)-poly(ε-caprolactone)-g-polyethyleneimine was synthesized, and the physicochemical properties of the self-assembled polymeric micelles were investigated, including hydrodynamic size, zeta potential, morphology, drug-loading content, drug-loading efficiency, and in vitro drug release. Using fluorescein diacetate as a model drug, the penetration capabilities of the polymeric micelles were monitored in vivo using a two-photon scanning fluorescence microscopy on murine corneas after topical application.

Results: The polymer was successfully synthesized and confirmed using nuclear magnetic resonance and Fourier transform infrared. The polymeric micelles had an average particle size of 28 nm, a zeta potential of approximately +12 mV, and a spherical morphology. The drug-loading efficiency and drug-loading content were 75.37% and 3.47%, respectively, which indicates that the polymeric micelles possess a high drug-loading capacity. The polymeric micelles also exhibited controlled-release behavior in vitro. Compared to the control, the positively charged polymeric micelles significantly penetrated through the cornea.

Conclusion: Positively charged micelles generated from a triblock copolymer are a promising vehicle for the topical delivery of hydrophobic agents in ocular applications.

No MeSH data available.


Related in: MedlinePlus