Limits...
Nanomedicine applications in orthopedic medicine: state of the art.

Mazaheri M, Eslahi N, Ordikhani F, Tamjid E, Simchi A - Int J Nanomedicine (2015)

Bottom Line: The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology.A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices.However, mimicking living bone tissue is still a challenge.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran.

ABSTRACT
The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology. A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices. However, mimicking living bone tissue is still a challenge. The scope of this review is to highlight the most recent accomplishments and trends in designing nanomaterials and their applications in orthopedics with an outline on future directions and challenges.

No MeSH data available.


Related in: MedlinePlus

Effect of carbon nanostructures on the performance of electrodeposited polysaccharide coatings on Ti foils.Notes: (A) SEM image of CS/GO (30 wt%) coating.113 (B) MTT viability and (C) SEM morphology of MG-63 cells cultured on the surface of the CS/GO coating. (D) A SEM image of alginate/BG/ND film. Copyright © 2013. Elsevier B.V. Reproduced from Mansoorianfar M, Shokrgozag MA, Mehrjoo M, Tamjid E, Simchi A. Nanodiamonds for surface engineering of orthopedic implants: enhanced biocompatibility in human osteosarcoma cell culture. Diam Relat Mater. 2013;40(0):107–114.53 (E) Formation of apatite phases on the surface of the alginate coating after 28 days of incubation in the SBF and (F) its MG-63 cell viability response. (G) The antibacterial performance of the CS/GO coating containing vancomycin against Staphylococcus aureus. Insets: plate counting images showing S. aureus bacteria colonies after 120 min incubation for the CS-30GO film containing (a) 0, (b) 0.5 and (c) 1 g/l antibiotics. (H) Cumulative drug release of the CS/GO (30 wt%) coating. Copyright © 2015. Elsevier B.V. Reproduced from Ordikhani F, Ramezani Farani M, et al. Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity. Carbon. 2015;84(0):91–102.113 *Denotes significant difference between TPS and EPD coatings (P<0.05). #Denotes significant difference between CS and composite coatings (P<0.05).Abbreviations: SEM, scanning electron microscope; CS, chitosan; GO, graphene oxide; BG, bioactive glass; ND, nanodiamond; SBF, simulated body fluid; TPS, tissue culture polystyrene; EPD, electrophoretic deposition; MTT, 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4592034&req=5

f3-ijn-10-6039: Effect of carbon nanostructures on the performance of electrodeposited polysaccharide coatings on Ti foils.Notes: (A) SEM image of CS/GO (30 wt%) coating.113 (B) MTT viability and (C) SEM morphology of MG-63 cells cultured on the surface of the CS/GO coating. (D) A SEM image of alginate/BG/ND film. Copyright © 2013. Elsevier B.V. Reproduced from Mansoorianfar M, Shokrgozag MA, Mehrjoo M, Tamjid E, Simchi A. Nanodiamonds for surface engineering of orthopedic implants: enhanced biocompatibility in human osteosarcoma cell culture. Diam Relat Mater. 2013;40(0):107–114.53 (E) Formation of apatite phases on the surface of the alginate coating after 28 days of incubation in the SBF and (F) its MG-63 cell viability response. (G) The antibacterial performance of the CS/GO coating containing vancomycin against Staphylococcus aureus. Insets: plate counting images showing S. aureus bacteria colonies after 120 min incubation for the CS-30GO film containing (a) 0, (b) 0.5 and (c) 1 g/l antibiotics. (H) Cumulative drug release of the CS/GO (30 wt%) coating. Copyright © 2015. Elsevier B.V. Reproduced from Ordikhani F, Ramezani Farani M, et al. Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity. Carbon. 2015;84(0):91–102.113 *Denotes significant difference between TPS and EPD coatings (P<0.05). #Denotes significant difference between CS and composite coatings (P<0.05).Abbreviations: SEM, scanning electron microscope; CS, chitosan; GO, graphene oxide; BG, bioactive glass; ND, nanodiamond; SBF, simulated body fluid; TPS, tissue culture polystyrene; EPD, electrophoretic deposition; MTT, 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide.

Mentions: Surface functionalization of orthopedic implants by nanostructured coatings and nanocomposites is an alternative way to affect their integration to bone while tailoring their biological responses. Many studies have been devoted to the preparation and characterizations of nanoceramics, nanopolymers, nanocomposites, and carbon nanomaterials on implantable materials. Safonov et al109 have shown that nanostructured Al2O3 coating on the surface of implantable metals such as Ti alloys and stainless steel improves in vivo and in vitro biocompatibility due to hydrophilic nature of the coated surface. Deposition of glycidyl methacrylate (GMA) nanolayer on the surface of Ti improves cellular attachment.110 Various polymer-based nanocomposites such as PCL/TiO2,26 PCL/n-BG,27 CS/BG,111 polymer/HA,56 and polymer/calcium phosphate8 have been examined and shown to possess improved bioactivity, enhanced mechanical properties, and better osteoconductivity. Many studies have also focused on utilizing carbon nanostructures as orthopedic implants coatings.50 Prodana et al106 developed a complex ceramic coating on Ti plates with TiO2 nanotubes, HA NPs, and functionalized MWCNTs. The complex coating showed a better biological adhesion and osteoblasts response. Ahmed al112 prepared CS/MWCNTs/CaCO3 nanocomposites on the surface of Ti–6Al–4V alloy and reported improved bioactivity and corrosion resistance of the orthopedic implant. Ordikhani et al113 fabricated novel GO/CS nanocomposite coatings on the surface of Ti foils by electrophoretic deposition (EPD) technique (Figure 3A). In vitro viability assay by human osteosarcoma cells (MG-63) demonstrated that the nanocomposite films were highly biocompatible up to 30 wt% GO (Figure 3B). The GO/CS films also supported the initial attachment, proliferation, and growth of the cells (Figure 3C). Mansoorianfar et al53 incorporated NDs and BG NPs in alginate films by EPD technique to prepare functional coatings on Ti implants (Figure 3D). In vitro bioactivity assessment in simulated body fluid (SBF) and MTT assay using MG-63 and L929 cells exhibited enhanced biocompatibility and bioactivity of the composite films (Figure 3E and F). Table 2 summarizes the surface modification methods for titanium and its alloys as the most widely used implantable materials in orthopedic medicine.


Nanomedicine applications in orthopedic medicine: state of the art.

Mazaheri M, Eslahi N, Ordikhani F, Tamjid E, Simchi A - Int J Nanomedicine (2015)

Effect of carbon nanostructures on the performance of electrodeposited polysaccharide coatings on Ti foils.Notes: (A) SEM image of CS/GO (30 wt%) coating.113 (B) MTT viability and (C) SEM morphology of MG-63 cells cultured on the surface of the CS/GO coating. (D) A SEM image of alginate/BG/ND film. Copyright © 2013. Elsevier B.V. Reproduced from Mansoorianfar M, Shokrgozag MA, Mehrjoo M, Tamjid E, Simchi A. Nanodiamonds for surface engineering of orthopedic implants: enhanced biocompatibility in human osteosarcoma cell culture. Diam Relat Mater. 2013;40(0):107–114.53 (E) Formation of apatite phases on the surface of the alginate coating after 28 days of incubation in the SBF and (F) its MG-63 cell viability response. (G) The antibacterial performance of the CS/GO coating containing vancomycin against Staphylococcus aureus. Insets: plate counting images showing S. aureus bacteria colonies after 120 min incubation for the CS-30GO film containing (a) 0, (b) 0.5 and (c) 1 g/l antibiotics. (H) Cumulative drug release of the CS/GO (30 wt%) coating. Copyright © 2015. Elsevier B.V. Reproduced from Ordikhani F, Ramezani Farani M, et al. Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity. Carbon. 2015;84(0):91–102.113 *Denotes significant difference between TPS and EPD coatings (P<0.05). #Denotes significant difference between CS and composite coatings (P<0.05).Abbreviations: SEM, scanning electron microscope; CS, chitosan; GO, graphene oxide; BG, bioactive glass; ND, nanodiamond; SBF, simulated body fluid; TPS, tissue culture polystyrene; EPD, electrophoretic deposition; MTT, 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4592034&req=5

f3-ijn-10-6039: Effect of carbon nanostructures on the performance of electrodeposited polysaccharide coatings on Ti foils.Notes: (A) SEM image of CS/GO (30 wt%) coating.113 (B) MTT viability and (C) SEM morphology of MG-63 cells cultured on the surface of the CS/GO coating. (D) A SEM image of alginate/BG/ND film. Copyright © 2013. Elsevier B.V. Reproduced from Mansoorianfar M, Shokrgozag MA, Mehrjoo M, Tamjid E, Simchi A. Nanodiamonds for surface engineering of orthopedic implants: enhanced biocompatibility in human osteosarcoma cell culture. Diam Relat Mater. 2013;40(0):107–114.53 (E) Formation of apatite phases on the surface of the alginate coating after 28 days of incubation in the SBF and (F) its MG-63 cell viability response. (G) The antibacterial performance of the CS/GO coating containing vancomycin against Staphylococcus aureus. Insets: plate counting images showing S. aureus bacteria colonies after 120 min incubation for the CS-30GO film containing (a) 0, (b) 0.5 and (c) 1 g/l antibiotics. (H) Cumulative drug release of the CS/GO (30 wt%) coating. Copyright © 2015. Elsevier B.V. Reproduced from Ordikhani F, Ramezani Farani M, et al. Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity. Carbon. 2015;84(0):91–102.113 *Denotes significant difference between TPS and EPD coatings (P<0.05). #Denotes significant difference between CS and composite coatings (P<0.05).Abbreviations: SEM, scanning electron microscope; CS, chitosan; GO, graphene oxide; BG, bioactive glass; ND, nanodiamond; SBF, simulated body fluid; TPS, tissue culture polystyrene; EPD, electrophoretic deposition; MTT, 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide.
Mentions: Surface functionalization of orthopedic implants by nanostructured coatings and nanocomposites is an alternative way to affect their integration to bone while tailoring their biological responses. Many studies have been devoted to the preparation and characterizations of nanoceramics, nanopolymers, nanocomposites, and carbon nanomaterials on implantable materials. Safonov et al109 have shown that nanostructured Al2O3 coating on the surface of implantable metals such as Ti alloys and stainless steel improves in vivo and in vitro biocompatibility due to hydrophilic nature of the coated surface. Deposition of glycidyl methacrylate (GMA) nanolayer on the surface of Ti improves cellular attachment.110 Various polymer-based nanocomposites such as PCL/TiO2,26 PCL/n-BG,27 CS/BG,111 polymer/HA,56 and polymer/calcium phosphate8 have been examined and shown to possess improved bioactivity, enhanced mechanical properties, and better osteoconductivity. Many studies have also focused on utilizing carbon nanostructures as orthopedic implants coatings.50 Prodana et al106 developed a complex ceramic coating on Ti plates with TiO2 nanotubes, HA NPs, and functionalized MWCNTs. The complex coating showed a better biological adhesion and osteoblasts response. Ahmed al112 prepared CS/MWCNTs/CaCO3 nanocomposites on the surface of Ti–6Al–4V alloy and reported improved bioactivity and corrosion resistance of the orthopedic implant. Ordikhani et al113 fabricated novel GO/CS nanocomposite coatings on the surface of Ti foils by electrophoretic deposition (EPD) technique (Figure 3A). In vitro viability assay by human osteosarcoma cells (MG-63) demonstrated that the nanocomposite films were highly biocompatible up to 30 wt% GO (Figure 3B). The GO/CS films also supported the initial attachment, proliferation, and growth of the cells (Figure 3C). Mansoorianfar et al53 incorporated NDs and BG NPs in alginate films by EPD technique to prepare functional coatings on Ti implants (Figure 3D). In vitro bioactivity assessment in simulated body fluid (SBF) and MTT assay using MG-63 and L929 cells exhibited enhanced biocompatibility and bioactivity of the composite films (Figure 3E and F). Table 2 summarizes the surface modification methods for titanium and its alloys as the most widely used implantable materials in orthopedic medicine.

Bottom Line: The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology.A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices.However, mimicking living bone tissue is still a challenge.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran.

ABSTRACT
The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology. A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices. However, mimicking living bone tissue is still a challenge. The scope of this review is to highlight the most recent accomplishments and trends in designing nanomaterials and their applications in orthopedics with an outline on future directions and challenges.

No MeSH data available.


Related in: MedlinePlus