Limits...
Nanomedicine applications in orthopedic medicine: state of the art.

Mazaheri M, Eslahi N, Ordikhani F, Tamjid E, Simchi A - Int J Nanomedicine (2015)

Bottom Line: The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology.A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices.However, mimicking living bone tissue is still a challenge.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran.

ABSTRACT
The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology. A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices. However, mimicking living bone tissue is still a challenge. The scope of this review is to highlight the most recent accomplishments and trends in designing nanomaterials and their applications in orthopedics with an outline on future directions and challenges.

No MeSH data available.


Scheme shows potential applications of nanomedicine in orthopedic medicine.Abbreviations: BG, bioactive glass; TCP, tricalcium phosphate.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4592034&req=5

f1-ijn-10-6039: Scheme shows potential applications of nanomedicine in orthopedic medicine.Abbreviations: BG, bioactive glass; TCP, tricalcium phosphate.

Mentions: Nanomedicine, the application of nanotechnology to medicine, aims to overcome problems related to diseases at nanoscale, where most of the biological molecules exist and operate.1 The response of host organisms at the protein and cellular level to nanomaterials is different from that observed for conventional materials.2 In orthopedic applications, there is a significant need and demand for the development of a bone substitute that is bioactive and exhibits material properties comparable with those of natural and healthy bone.3 For bone tissue engineering, nanostructured ceramics, polymers, metals, and composites have been receiving significant attention recently.4 Nanostructured materials enhance osteoblast functions (such as adhesion, proliferation, synthesis of bone-related proteins, and deposition of calcium-containing mineral) and promote adequate osteointegration due to increased surface area and roughness.5 Owing to the ability of nanomaterials to mimic the dimensions of constituent components of natural bone,3 they are promising candidates as the future and alternative orthopedic materials. Figure 1 summarizes the potential of nanomedicine in orthopedic applications. We believe that there are a plenty of room for development and implantation of nanomaterials in orthopedic medicine because nanofunctionalized scaffolds can provide structural support for the cells and regulate cell proliferation, differentiation, and migration.6 Many studies have shown that nanomaterials enable enhancement of osteointegration and promote healing of bone-related diseases.7 Wang et al8 have recently shown that nanostructured calcium phosphate scaffolds could support stem cell attachment/proliferation and induce osteogenic differentiation due to their chemical or crystallographic similarities to inorganic components of bone. Antimicrobial and drug-eluting coatings are other examples for the application of nanomaterials in orthopedic medicine. These coatings prevent infection risks of implants, which are the most common cause of reverse surgery.9 Meanwhile, potential pitfalls or undesirable side effects associated with the use of nanomaterials should be considered. In this article, we review recent advances in utilizing nanomaterials for orthopedic medicine with a focus on implantable devices, functional coatings, surface modification techniques, diagnostics, and therapeutics. The potential risks of using nanomaterials are also presented.


Nanomedicine applications in orthopedic medicine: state of the art.

Mazaheri M, Eslahi N, Ordikhani F, Tamjid E, Simchi A - Int J Nanomedicine (2015)

Scheme shows potential applications of nanomedicine in orthopedic medicine.Abbreviations: BG, bioactive glass; TCP, tricalcium phosphate.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4592034&req=5

f1-ijn-10-6039: Scheme shows potential applications of nanomedicine in orthopedic medicine.Abbreviations: BG, bioactive glass; TCP, tricalcium phosphate.
Mentions: Nanomedicine, the application of nanotechnology to medicine, aims to overcome problems related to diseases at nanoscale, where most of the biological molecules exist and operate.1 The response of host organisms at the protein and cellular level to nanomaterials is different from that observed for conventional materials.2 In orthopedic applications, there is a significant need and demand for the development of a bone substitute that is bioactive and exhibits material properties comparable with those of natural and healthy bone.3 For bone tissue engineering, nanostructured ceramics, polymers, metals, and composites have been receiving significant attention recently.4 Nanostructured materials enhance osteoblast functions (such as adhesion, proliferation, synthesis of bone-related proteins, and deposition of calcium-containing mineral) and promote adequate osteointegration due to increased surface area and roughness.5 Owing to the ability of nanomaterials to mimic the dimensions of constituent components of natural bone,3 they are promising candidates as the future and alternative orthopedic materials. Figure 1 summarizes the potential of nanomedicine in orthopedic applications. We believe that there are a plenty of room for development and implantation of nanomaterials in orthopedic medicine because nanofunctionalized scaffolds can provide structural support for the cells and regulate cell proliferation, differentiation, and migration.6 Many studies have shown that nanomaterials enable enhancement of osteointegration and promote healing of bone-related diseases.7 Wang et al8 have recently shown that nanostructured calcium phosphate scaffolds could support stem cell attachment/proliferation and induce osteogenic differentiation due to their chemical or crystallographic similarities to inorganic components of bone. Antimicrobial and drug-eluting coatings are other examples for the application of nanomaterials in orthopedic medicine. These coatings prevent infection risks of implants, which are the most common cause of reverse surgery.9 Meanwhile, potential pitfalls or undesirable side effects associated with the use of nanomaterials should be considered. In this article, we review recent advances in utilizing nanomaterials for orthopedic medicine with a focus on implantable devices, functional coatings, surface modification techniques, diagnostics, and therapeutics. The potential risks of using nanomaterials are also presented.

Bottom Line: The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology.A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices.However, mimicking living bone tissue is still a challenge.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran.

ABSTRACT
The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology. A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices. However, mimicking living bone tissue is still a challenge. The scope of this review is to highlight the most recent accomplishments and trends in designing nanomaterials and their applications in orthopedics with an outline on future directions and challenges.

No MeSH data available.