Limits...
Phylogenesis and Biological Characterization of a New Glucose Transporter in the Chicken (Gallus gallus), GLUT12.

Coudert E, Pascal G, Dupont J, Simon J, Cailleau-Audouin E, Crochet S, Duclos MJ, Tesseraud S, Métayer-Coustard S - PLoS ONE (2015)

Bottom Line: Third a physiological characterization was performed: SLC2A12 mRNA levels were significantly lowered in fed chickens subjected to insulin immuno-neutralization.Finally, recruitment of immuno-reactive GLUT12 to the muscle plasma membrane was increased following 1h of intraperitoneal insulin administration (compared to a control fasted state).In conclusion, these results suggest that the facilitative glucose transporter protein GLUT12 could act in chicken muscle as an insulin-sensitive transporter that is qualitatively similar to GLUT4 in mammals.

View Article: PubMed Central - PubMed

Affiliation: UR83 Recherches Avicoles, Institut National de la Recherche Agronomique, Nouzilly, France.

ABSTRACT
In mammals, insulin-sensitive GLUTs, including GLUT4, are recruited to the plasma membrane of adipose and muscle tissues in response to insulin. The GLUT4 gene is absent from the chicken genome, and no functional insulin-sensitive GLUTs have been characterized in chicken tissues to date. A nucleotide sequence is predicted to encode a chicken GLUT12 ortholog and, interestingly, GLUT12 has been described to act as an insulin-sensitive GLUT in mammals. It encodes a 596 amino acid protein exhibiting 71% identity with human GLUT12. First, we present the results of a phylogenetic study showing the stability of this gene during evolution of vertebrates. Second, tissue distribution of chicken SLC2A12 mRNA was characterized by RT-PCR. It was predominantly expressed in skeletal muscle and heart. Protein distribution was analysed by Western blotting using an anti-human GLUT12 antibody directed against a highly conserved region (87% of identity). An immuno-reactive band of the expected size (75kDa) was detected in the same tissues. Third a physiological characterization was performed: SLC2A12 mRNA levels were significantly lowered in fed chickens subjected to insulin immuno-neutralization. Finally, recruitment of immuno-reactive GLUT12 to the muscle plasma membrane was increased following 1h of intraperitoneal insulin administration (compared to a control fasted state). Thus insulin administration elicited membrane GLUT12 recruitment. In conclusion, these results suggest that the facilitative glucose transporter protein GLUT12 could act in chicken muscle as an insulin-sensitive transporter that is qualitatively similar to GLUT4 in mammals.

No MeSH data available.


Comparative maps of SLC2A4 genomic region.Synteny blocks between human Chromosome 17 (Chr 17) and chicken chromosomes 18, 19 and 27 (Chr 18, 19 and 27) according to Ensembl (http://www.ensembl.org). The arrow indicates the SLC2A4 region in human Chr17.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4592010&req=5

pone.0139517.g002: Comparative maps of SLC2A4 genomic region.Synteny blocks between human Chromosome 17 (Chr 17) and chicken chromosomes 18, 19 and 27 (Chr 18, 19 and 27) according to Ensembl (http://www.ensembl.org). The arrow indicates the SLC2A4 region in human Chr17.

Mentions: The chicken genome sequencing available to date has not provided any evidence regarding the presence of a chicken GLUT4 although a GLUT4 ortholog or SLC2A4 gene has been found in various species of fish (Cod, Stickleback, Fugu, Tetraedon, Platyfish, Medaka and Tilapia), as well as in Sauropsida (Chinese softshell turtle) and Reptilia (Anole lizard) classes (data not shown). No sequence encoding a SLC2A4 ortholog has been found in other birds (Zebra finch, Turkey or Duck), the Frog or Zebrafish. The human SLC2A4 gene is located on chromosome 17 in a synteny block that is well conserved within vertebrates (data not shown). The region in which the human SLC2A4 gene is located is almost entirely missing from the current chicken sequence assembly (Fig 2).


Phylogenesis and Biological Characterization of a New Glucose Transporter in the Chicken (Gallus gallus), GLUT12.

Coudert E, Pascal G, Dupont J, Simon J, Cailleau-Audouin E, Crochet S, Duclos MJ, Tesseraud S, Métayer-Coustard S - PLoS ONE (2015)

Comparative maps of SLC2A4 genomic region.Synteny blocks between human Chromosome 17 (Chr 17) and chicken chromosomes 18, 19 and 27 (Chr 18, 19 and 27) according to Ensembl (http://www.ensembl.org). The arrow indicates the SLC2A4 region in human Chr17.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4592010&req=5

pone.0139517.g002: Comparative maps of SLC2A4 genomic region.Synteny blocks between human Chromosome 17 (Chr 17) and chicken chromosomes 18, 19 and 27 (Chr 18, 19 and 27) according to Ensembl (http://www.ensembl.org). The arrow indicates the SLC2A4 region in human Chr17.
Mentions: The chicken genome sequencing available to date has not provided any evidence regarding the presence of a chicken GLUT4 although a GLUT4 ortholog or SLC2A4 gene has been found in various species of fish (Cod, Stickleback, Fugu, Tetraedon, Platyfish, Medaka and Tilapia), as well as in Sauropsida (Chinese softshell turtle) and Reptilia (Anole lizard) classes (data not shown). No sequence encoding a SLC2A4 ortholog has been found in other birds (Zebra finch, Turkey or Duck), the Frog or Zebrafish. The human SLC2A4 gene is located on chromosome 17 in a synteny block that is well conserved within vertebrates (data not shown). The region in which the human SLC2A4 gene is located is almost entirely missing from the current chicken sequence assembly (Fig 2).

Bottom Line: Third a physiological characterization was performed: SLC2A12 mRNA levels were significantly lowered in fed chickens subjected to insulin immuno-neutralization.Finally, recruitment of immuno-reactive GLUT12 to the muscle plasma membrane was increased following 1h of intraperitoneal insulin administration (compared to a control fasted state).In conclusion, these results suggest that the facilitative glucose transporter protein GLUT12 could act in chicken muscle as an insulin-sensitive transporter that is qualitatively similar to GLUT4 in mammals.

View Article: PubMed Central - PubMed

Affiliation: UR83 Recherches Avicoles, Institut National de la Recherche Agronomique, Nouzilly, France.

ABSTRACT
In mammals, insulin-sensitive GLUTs, including GLUT4, are recruited to the plasma membrane of adipose and muscle tissues in response to insulin. The GLUT4 gene is absent from the chicken genome, and no functional insulin-sensitive GLUTs have been characterized in chicken tissues to date. A nucleotide sequence is predicted to encode a chicken GLUT12 ortholog and, interestingly, GLUT12 has been described to act as an insulin-sensitive GLUT in mammals. It encodes a 596 amino acid protein exhibiting 71% identity with human GLUT12. First, we present the results of a phylogenetic study showing the stability of this gene during evolution of vertebrates. Second, tissue distribution of chicken SLC2A12 mRNA was characterized by RT-PCR. It was predominantly expressed in skeletal muscle and heart. Protein distribution was analysed by Western blotting using an anti-human GLUT12 antibody directed against a highly conserved region (87% of identity). An immuno-reactive band of the expected size (75kDa) was detected in the same tissues. Third a physiological characterization was performed: SLC2A12 mRNA levels were significantly lowered in fed chickens subjected to insulin immuno-neutralization. Finally, recruitment of immuno-reactive GLUT12 to the muscle plasma membrane was increased following 1h of intraperitoneal insulin administration (compared to a control fasted state). Thus insulin administration elicited membrane GLUT12 recruitment. In conclusion, these results suggest that the facilitative glucose transporter protein GLUT12 could act in chicken muscle as an insulin-sensitive transporter that is qualitatively similar to GLUT4 in mammals.

No MeSH data available.