Limits...
Altered Monocyte Phenotype in HIV-1 Infection Tends to Normalize with Integrase-Inhibitor-Based Antiretroviral Therapy.

McCausland MR, Juchnowski SM, Zidar DA, Kuritzkes DR, Andrade A, Sieg SF, Lederman MM, Funderburg NT - PLoS ONE (2015)

Bottom Line: Monocytes are increasingly implicated in the inflammatory consequences of HIV-1 disease, yet their phenotype following antiretroviral therapy (ART) initiation is incompletely defined.We also report lower expression of CX3CR1 (p = 0.014) on patrolling monocytes at baseline, compared to levels seen in controls.In HIV-1 infected patients, ART appears to attenuate the high levels of activation (HLA-DR, CD86) and to increase expression of the chemokine receptors CCR2 and CX3CR1 on monocyte populations.

View Article: PubMed Central - PubMed

Affiliation: Division of Infectious Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.

ABSTRACT

Background: Monocytes are increasingly implicated in the inflammatory consequences of HIV-1 disease, yet their phenotype following antiretroviral therapy (ART) initiation is incompletely defined. Here, we define more completely monocyte phenotype both prior to ART initiation and during 48 weeks of ART.

Methods: Cryopreserved peripheral blood mononuclear cells (PBMCs) were obtained at baseline (prior to ART initiation) and at weeks 12, 24, and 48 of treatment from 29 patients participating in ACTG clinical trial A5248, an open label study of raltegravir/emtricitibine/tenofovir administration. For comparison, cryopreserved PBMCs were obtained from 15 HIV-1 uninfected donors, each of whom had at least two cardiovascular risk factors. Thawed samples were stained for monocyte subset markers (CD14 and CD16), HLA-DR, CCR2, CX3CR1, CD86, CD83, CD40, CD38, CD36, CD13, and CD163 and examined using flow cytometry.

Results: In untreated HIV-1 infection there were perturbations in monocyte subset phenotypes, chiefly a higher frequency and density (mean fluorescence intensity-MFI) of HLA-DR (%-p = 0.004, MFI-p = .0005) and CD86 (%-p = 0.012, MFI-p = 0.005) expression and lower frequency of CCR2 (p = 0.0002) expression on all monocytes, lower CCR2 density on inflammatory monocytes (p = 0.045) when compared to the expression and density of these markers in controls' monocytes. We also report lower expression of CX3CR1 (p = 0.014) on patrolling monocytes at baseline, compared to levels seen in controls. After ART, these perturbations tended to improve, with decreasing expression and density of HLA-DR and CD86, increasing CCR2 density on inflammatory monocytes, and increasing expression and density of CX3CR1 on patrolling monocytes.

Conclusions: In HIV-1 infected patients, ART appears to attenuate the high levels of activation (HLA-DR, CD86) and to increase expression of the chemokine receptors CCR2 and CX3CR1 on monocyte populations. Circulating monocyte phenotypes are altered in untreated infection and tend to normalize with ART; the role of these cells in the inflammatory environment of HIV-1 infection warrants further study.

No MeSH data available.


Related in: MedlinePlus

Gating strategy for flow cytometry and comparison between fresh and cryopreserved monocyte surface marker expression.(A) Shown are isotype control dot plots and CD14 and CD16 expression in freshly obtained and cryopreserved PBMC from the same healthy volunteer and the expression of CX3CR1 on each monocyte subset in the cryopreserved sample. Monocyte subsets were gated using the isotype staining as a guide, as seen in the farthest left panel. Traditional monocytes are in purple, inflammatory monocytes are in pink, patrolling monocytes are in green. Gates are drawn based on negative isotype staining using Rat IgG2b, in the case of CX3CR1. (B) Summary surface marker expression, both proportion and MFI, in fresh and cryopreserved PBMCs on total monocytes of healthy control subjects, with medians, are shown. Each shape (triangle, square, diamond, and circle) represents an individual healthy control subject. (C) Summary surface marker expression, both proportion and MFI, in fresh and cryopreserved PBMCs on total monocytes of virologically suppressed HIV-infected subjects, with medians, are shown. Each shape (triangle, square, diamond, and circle) represents an individual HIV-infected subject.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4591977&req=5

pone.0139474.g001: Gating strategy for flow cytometry and comparison between fresh and cryopreserved monocyte surface marker expression.(A) Shown are isotype control dot plots and CD14 and CD16 expression in freshly obtained and cryopreserved PBMC from the same healthy volunteer and the expression of CX3CR1 on each monocyte subset in the cryopreserved sample. Monocyte subsets were gated using the isotype staining as a guide, as seen in the farthest left panel. Traditional monocytes are in purple, inflammatory monocytes are in pink, patrolling monocytes are in green. Gates are drawn based on negative isotype staining using Rat IgG2b, in the case of CX3CR1. (B) Summary surface marker expression, both proportion and MFI, in fresh and cryopreserved PBMCs on total monocytes of healthy control subjects, with medians, are shown. Each shape (triangle, square, diamond, and circle) represents an individual healthy control subject. (C) Summary surface marker expression, both proportion and MFI, in fresh and cryopreserved PBMCs on total monocytes of virologically suppressed HIV-infected subjects, with medians, are shown. Each shape (triangle, square, diamond, and circle) represents an individual HIV-infected subject.

Mentions: Monocyte subset distributions in fresh and cryopreserved monocytes are similar (Fig 1A). Expression of CD40, CD163, CD86, CD38, HLA-DR, CCR2, CX3CR1, and CD13 on monocytes was consistent in fresh and cryopreserved PBMCs of healthy (Fig 1B) and virologically suppressed HIV-1-infected subjects (Fig 1C), though the HIV-1-infected subjects appear to have higher variability in staining. The density (MFI) of CD36 appeared to be greater in the cryopreserved PBMCs of the healthy subjects, though this was driven by relatively low expression of CD36 in the fresh preparation from one healthy subject. Although the expression of CD83 was relatively diminished in cryopreserved PBMCs of the controls, we elected to retain this marker in the panel as CD83 expression is a marker of monocyte maturation that increases in response to viral products[16]. In contrast, the expression of LOX1, PDL1 and PDL2 was diminished so dramatically after cryopreservation that these markers were excluded from the panel (data not shown).


Altered Monocyte Phenotype in HIV-1 Infection Tends to Normalize with Integrase-Inhibitor-Based Antiretroviral Therapy.

McCausland MR, Juchnowski SM, Zidar DA, Kuritzkes DR, Andrade A, Sieg SF, Lederman MM, Funderburg NT - PLoS ONE (2015)

Gating strategy for flow cytometry and comparison between fresh and cryopreserved monocyte surface marker expression.(A) Shown are isotype control dot plots and CD14 and CD16 expression in freshly obtained and cryopreserved PBMC from the same healthy volunteer and the expression of CX3CR1 on each monocyte subset in the cryopreserved sample. Monocyte subsets were gated using the isotype staining as a guide, as seen in the farthest left panel. Traditional monocytes are in purple, inflammatory monocytes are in pink, patrolling monocytes are in green. Gates are drawn based on negative isotype staining using Rat IgG2b, in the case of CX3CR1. (B) Summary surface marker expression, both proportion and MFI, in fresh and cryopreserved PBMCs on total monocytes of healthy control subjects, with medians, are shown. Each shape (triangle, square, diamond, and circle) represents an individual healthy control subject. (C) Summary surface marker expression, both proportion and MFI, in fresh and cryopreserved PBMCs on total monocytes of virologically suppressed HIV-infected subjects, with medians, are shown. Each shape (triangle, square, diamond, and circle) represents an individual HIV-infected subject.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4591977&req=5

pone.0139474.g001: Gating strategy for flow cytometry and comparison between fresh and cryopreserved monocyte surface marker expression.(A) Shown are isotype control dot plots and CD14 and CD16 expression in freshly obtained and cryopreserved PBMC from the same healthy volunteer and the expression of CX3CR1 on each monocyte subset in the cryopreserved sample. Monocyte subsets were gated using the isotype staining as a guide, as seen in the farthest left panel. Traditional monocytes are in purple, inflammatory monocytes are in pink, patrolling monocytes are in green. Gates are drawn based on negative isotype staining using Rat IgG2b, in the case of CX3CR1. (B) Summary surface marker expression, both proportion and MFI, in fresh and cryopreserved PBMCs on total monocytes of healthy control subjects, with medians, are shown. Each shape (triangle, square, diamond, and circle) represents an individual healthy control subject. (C) Summary surface marker expression, both proportion and MFI, in fresh and cryopreserved PBMCs on total monocytes of virologically suppressed HIV-infected subjects, with medians, are shown. Each shape (triangle, square, diamond, and circle) represents an individual HIV-infected subject.
Mentions: Monocyte subset distributions in fresh and cryopreserved monocytes are similar (Fig 1A). Expression of CD40, CD163, CD86, CD38, HLA-DR, CCR2, CX3CR1, and CD13 on monocytes was consistent in fresh and cryopreserved PBMCs of healthy (Fig 1B) and virologically suppressed HIV-1-infected subjects (Fig 1C), though the HIV-1-infected subjects appear to have higher variability in staining. The density (MFI) of CD36 appeared to be greater in the cryopreserved PBMCs of the healthy subjects, though this was driven by relatively low expression of CD36 in the fresh preparation from one healthy subject. Although the expression of CD83 was relatively diminished in cryopreserved PBMCs of the controls, we elected to retain this marker in the panel as CD83 expression is a marker of monocyte maturation that increases in response to viral products[16]. In contrast, the expression of LOX1, PDL1 and PDL2 was diminished so dramatically after cryopreservation that these markers were excluded from the panel (data not shown).

Bottom Line: Monocytes are increasingly implicated in the inflammatory consequences of HIV-1 disease, yet their phenotype following antiretroviral therapy (ART) initiation is incompletely defined.We also report lower expression of CX3CR1 (p = 0.014) on patrolling monocytes at baseline, compared to levels seen in controls.In HIV-1 infected patients, ART appears to attenuate the high levels of activation (HLA-DR, CD86) and to increase expression of the chemokine receptors CCR2 and CX3CR1 on monocyte populations.

View Article: PubMed Central - PubMed

Affiliation: Division of Infectious Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.

ABSTRACT

Background: Monocytes are increasingly implicated in the inflammatory consequences of HIV-1 disease, yet their phenotype following antiretroviral therapy (ART) initiation is incompletely defined. Here, we define more completely monocyte phenotype both prior to ART initiation and during 48 weeks of ART.

Methods: Cryopreserved peripheral blood mononuclear cells (PBMCs) were obtained at baseline (prior to ART initiation) and at weeks 12, 24, and 48 of treatment from 29 patients participating in ACTG clinical trial A5248, an open label study of raltegravir/emtricitibine/tenofovir administration. For comparison, cryopreserved PBMCs were obtained from 15 HIV-1 uninfected donors, each of whom had at least two cardiovascular risk factors. Thawed samples were stained for monocyte subset markers (CD14 and CD16), HLA-DR, CCR2, CX3CR1, CD86, CD83, CD40, CD38, CD36, CD13, and CD163 and examined using flow cytometry.

Results: In untreated HIV-1 infection there were perturbations in monocyte subset phenotypes, chiefly a higher frequency and density (mean fluorescence intensity-MFI) of HLA-DR (%-p = 0.004, MFI-p = .0005) and CD86 (%-p = 0.012, MFI-p = 0.005) expression and lower frequency of CCR2 (p = 0.0002) expression on all monocytes, lower CCR2 density on inflammatory monocytes (p = 0.045) when compared to the expression and density of these markers in controls' monocytes. We also report lower expression of CX3CR1 (p = 0.014) on patrolling monocytes at baseline, compared to levels seen in controls. After ART, these perturbations tended to improve, with decreasing expression and density of HLA-DR and CD86, increasing CCR2 density on inflammatory monocytes, and increasing expression and density of CX3CR1 on patrolling monocytes.

Conclusions: In HIV-1 infected patients, ART appears to attenuate the high levels of activation (HLA-DR, CD86) and to increase expression of the chemokine receptors CCR2 and CX3CR1 on monocyte populations. Circulating monocyte phenotypes are altered in untreated infection and tend to normalize with ART; the role of these cells in the inflammatory environment of HIV-1 infection warrants further study.

No MeSH data available.


Related in: MedlinePlus