Limits...
Validation of high temporal resolution spiral phase velocity mapping of temporal patterns of left and right coronary artery blood flow against Doppler guidewire.

Keegan J, Raphael CE, Parker K, Simpson RM, Strain S, de Silva R, Di Mario C, Collinson J, Stables RH, Wage R, Drivas P, Sugathapala M, Prasad SK, Firmin DN - J Cardiovasc Magn Reson (2015)

Bottom Line: A non-invasive alternative would be beneficial as it would allow study of a wider patient population and serial scanning.Cardiovascular magnetic resonance (CMR) velocity-time curves were processed semi-automatically and compared with corresponding invasive Doppler data.In individual vessels, plots of CMR velocities at all cardiac phases against corresponding Doppler velocities showed a consistent linear relationship between the two with high R(2) values (mean +/-SD: 0.79 +/-.13).

View Article: PubMed Central - PubMed

Affiliation: Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK. j.keegan@rbht.nhs.uk.

ABSTRACT

Background: Temporal patterns of coronary blood flow velocity can provide important information on disease state and are currently assessed invasively using a Doppler guidewire. A non-invasive alternative would be beneficial as it would allow study of a wider patient population and serial scanning.

Methods: A retrospectively-gated breath-hold spiral phase velocity mapping sequence (TR 19 ms) was developed at 3 Tesla. Velocity maps were acquired in 8 proximal right and 15 proximal left coronary arteries of 18 subjects who had previously had a Doppler guidewire study at the time of coronary angiography. Cardiovascular magnetic resonance (CMR) velocity-time curves were processed semi-automatically and compared with corresponding invasive Doppler data.

Results: When corrected for differences in heart rate between the two studies, CMR mean velocity through the cardiac cycle, peak systolic velocity (PSV) and peak diastolic velocity (PDV) were approximately 40 % of the peak Doppler values with a moderate - good linear relationship between the two techniques (R(2): 0.57, 0.64 and 0.79 respectively). CMR values of PDV/PSV showed a strong linear relationship with Doppler values with a slope close to unity (0.89 and 0.90 for right and left arteries respectively). In individual vessels, plots of CMR velocities at all cardiac phases against corresponding Doppler velocities showed a consistent linear relationship between the two with high R(2) values (mean +/-SD: 0.79 +/-.13).

Conclusions: High temporal resolution breath-hold spiral phase velocity mapping underestimates absolute values of coronary flow velocity but allows accurate assessment of the temporal patterns of blood flow.

No MeSH data available.


Related in: MedlinePlus

CMR velocity-time curves assessed with the semi-automatic technique in repeated breath-holds (red and green) in 5 right coronary arteries (top) and 10 left anterior descending arteries (middle and bottom)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4591589&req=5

Fig1: CMR velocity-time curves assessed with the semi-automatic technique in repeated breath-holds (red and green) in 5 right coronary arteries (top) and 10 left anterior descending arteries (middle and bottom)

Mentions: The semi-automatic analysis technique enabled velocity-time curves of coronary blood flow velocity to be produced in typically < 5 min with minimal user interaction. This included time to review the coronary and through-plane correction ROIs on all 50 cine frames (magnitude images and velocity maps). Manual analysis took approximately 30 min per vessel. Table 1 shows the results of manual and semi-automatic analyses of MV, flow, PSV, TPSV, PDV and TPDV in 15 vessels, together with the inter-observer reproducibility of these parameters for the semi-automatic analyses. Table 2 shows the inter breath-hold reproducibility for each of two observers. Figure 1 shows the inter breath-hold reproducibility of the temporal flow patterns in the 5 RCA and in the 10 LAD arteries, as measured with the semi-automatic technique. While the shape of the plots varies from patient to patient and includes a number of vessels with reverse flow during systole, in each case, the temporal flow patterns from one breath-hold to the next are highly similar.Table 1


Validation of high temporal resolution spiral phase velocity mapping of temporal patterns of left and right coronary artery blood flow against Doppler guidewire.

Keegan J, Raphael CE, Parker K, Simpson RM, Strain S, de Silva R, Di Mario C, Collinson J, Stables RH, Wage R, Drivas P, Sugathapala M, Prasad SK, Firmin DN - J Cardiovasc Magn Reson (2015)

CMR velocity-time curves assessed with the semi-automatic technique in repeated breath-holds (red and green) in 5 right coronary arteries (top) and 10 left anterior descending arteries (middle and bottom)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4591589&req=5

Fig1: CMR velocity-time curves assessed with the semi-automatic technique in repeated breath-holds (red and green) in 5 right coronary arteries (top) and 10 left anterior descending arteries (middle and bottom)
Mentions: The semi-automatic analysis technique enabled velocity-time curves of coronary blood flow velocity to be produced in typically < 5 min with minimal user interaction. This included time to review the coronary and through-plane correction ROIs on all 50 cine frames (magnitude images and velocity maps). Manual analysis took approximately 30 min per vessel. Table 1 shows the results of manual and semi-automatic analyses of MV, flow, PSV, TPSV, PDV and TPDV in 15 vessels, together with the inter-observer reproducibility of these parameters for the semi-automatic analyses. Table 2 shows the inter breath-hold reproducibility for each of two observers. Figure 1 shows the inter breath-hold reproducibility of the temporal flow patterns in the 5 RCA and in the 10 LAD arteries, as measured with the semi-automatic technique. While the shape of the plots varies from patient to patient and includes a number of vessels with reverse flow during systole, in each case, the temporal flow patterns from one breath-hold to the next are highly similar.Table 1

Bottom Line: A non-invasive alternative would be beneficial as it would allow study of a wider patient population and serial scanning.Cardiovascular magnetic resonance (CMR) velocity-time curves were processed semi-automatically and compared with corresponding invasive Doppler data.In individual vessels, plots of CMR velocities at all cardiac phases against corresponding Doppler velocities showed a consistent linear relationship between the two with high R(2) values (mean +/-SD: 0.79 +/-.13).

View Article: PubMed Central - PubMed

Affiliation: Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK. j.keegan@rbht.nhs.uk.

ABSTRACT

Background: Temporal patterns of coronary blood flow velocity can provide important information on disease state and are currently assessed invasively using a Doppler guidewire. A non-invasive alternative would be beneficial as it would allow study of a wider patient population and serial scanning.

Methods: A retrospectively-gated breath-hold spiral phase velocity mapping sequence (TR 19 ms) was developed at 3 Tesla. Velocity maps were acquired in 8 proximal right and 15 proximal left coronary arteries of 18 subjects who had previously had a Doppler guidewire study at the time of coronary angiography. Cardiovascular magnetic resonance (CMR) velocity-time curves were processed semi-automatically and compared with corresponding invasive Doppler data.

Results: When corrected for differences in heart rate between the two studies, CMR mean velocity through the cardiac cycle, peak systolic velocity (PSV) and peak diastolic velocity (PDV) were approximately 40 % of the peak Doppler values with a moderate - good linear relationship between the two techniques (R(2): 0.57, 0.64 and 0.79 respectively). CMR values of PDV/PSV showed a strong linear relationship with Doppler values with a slope close to unity (0.89 and 0.90 for right and left arteries respectively). In individual vessels, plots of CMR velocities at all cardiac phases against corresponding Doppler velocities showed a consistent linear relationship between the two with high R(2) values (mean +/-SD: 0.79 +/-.13).

Conclusions: High temporal resolution breath-hold spiral phase velocity mapping underestimates absolute values of coronary flow velocity but allows accurate assessment of the temporal patterns of blood flow.

No MeSH data available.


Related in: MedlinePlus