Limits...
Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art.

Oberbauer E, Steffenhagen C, Wurzer C, Gabriel C, Redl H, Wolbank S - Cell Regen (Lond) (2015)

Bottom Line: To isolate SVF from adipose tissue, enzymes such as collagenase are used.Alternatively, in order to avoid enzymes, isolation systems using physical forces are available.Here, we provide an overview of known existing enzymatic and non-enzymatic adipose tissue-derived cell isolation systems, which are patented, published, or already on the market.

View Article: PubMed Central - PubMed

Affiliation: Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria ; Austrian Cluster for Tissue Regeneration, Vienna, Austria.

ABSTRACT
In the past decade, adipose tissue became a highly interesting source of adult stem cells for plastic surgery and regenerative medicine. The isolated stromal vascular fraction (SVF) is a heterogeneous cell population including the adipose-derived stromal/stem cells (ASC), which showed regenerative potential in several clinical studies and trials. SVF should be provided in a safe and reproducible manner in accordance with current good manufacturing practices (cGMP). To ensure highest possible safety for patients, a precisely defined procedure with a high-quality control is required. Hence, an increasing number of adipose tissue-derived cell isolation systems have been developed. These systems aim for a closed, sterile, and safe isolation process limiting donor variations, risk for contaminations, and unpredictability of the cell material. To isolate SVF from adipose tissue, enzymes such as collagenase are used. Alternatively, in order to avoid enzymes, isolation systems using physical forces are available. Here, we provide an overview of known existing enzymatic and non-enzymatic adipose tissue-derived cell isolation systems, which are patented, published, or already on the market.

No MeSH data available.


Related in: MedlinePlus

Adipose-derived cells: origin, immunophenotype, morphology, and differentiation potential. Lipoaspirate can be easily obtained from the patient and processed to obtain a heterogeneous cell population, the stromal vascular fraction (SVF). Adipose-derived stromal/stem cells (ASC) can be isolated from the SVF by in vitro cultivation on plastic surfaces. ASC are characterized mainly by mesenchymal stem cell marker (CD73, CD90, CD105) at the expense of hematopoietic stem cell marker (CD45) and their spindle-shaped morphology with the ability to differentiate into the adipogenic, osteogenic, and chondrogenic lineages. The differentiation potential can be analyzed by histological stainings, such as Oil red O for adipogenic, Alizarin red for osteogenic, and Alcian Blue for chondrogenic differentiation
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4591586&req=5

Fig1: Adipose-derived cells: origin, immunophenotype, morphology, and differentiation potential. Lipoaspirate can be easily obtained from the patient and processed to obtain a heterogeneous cell population, the stromal vascular fraction (SVF). Adipose-derived stromal/stem cells (ASC) can be isolated from the SVF by in vitro cultivation on plastic surfaces. ASC are characterized mainly by mesenchymal stem cell marker (CD73, CD90, CD105) at the expense of hematopoietic stem cell marker (CD45) and their spindle-shaped morphology with the ability to differentiate into the adipogenic, osteogenic, and chondrogenic lineages. The differentiation potential can be analyzed by histological stainings, such as Oil red O for adipogenic, Alizarin red for osteogenic, and Alcian Blue for chondrogenic differentiation

Mentions: ASC can be isolated from the SVF by in vitro cultivation on plastic surfaces, which results in the accumulation of spindle-shaped cells characterized by their self-renewal potency and ability to give rise to at least adipogenic, osteogenic, and chondrogenic lineages [33–35] (Fig. 1). Besides that, there is a growing body of evidence that these cells can generate a variety of other cell types including neuronal/glial-like cells [36–39], cardiomyocytes [40, 41], endothelial cells [42–44], hepatocyte-like cells [45, 46], various epithelial cell types [47–49], keratinocyte-like cells [50], and dental bud structures [51]. In addition to their extensive differentiation potential, ASC have been shown to secrete high levels of growth factors such as epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), keratinocyte growth factor (KGF), platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-β), insulin growth factor (IGF), and brain-derived neurotrophic factor (BDNF) [52]. The growth factors are secreted at bioactive levels and act primarily angiogenic and anti-apoptotic, and their secretion is significantly increased under hypoxic conditions [53–57]. Besides growth factors, ASC also release cytokines including fms-related tyrosine kinase 3 (Flt-3) ligand, granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage-colony stimulating factor (GM-CSF), macrophage-colony stimulating factor (M-CSF), interleukin (IL) such as IL-6, IL-7, IL-8, IL-11, and IL-12, leukemia inhibitory factor (LIF), and tumor necrosis factor-alpha (TNF-α) [44, 58]. Further, they are able to interact with cells of the immune system and have demonstrated to possess immunomodulatory and anti-inflammatory effects [59–62]. ASC have been successfully used in clinical studies and trials for treating soft tissue defects, bone defects, gastrointestinal lesions, immune disorders, neurological injuries, and cardiovascular diseases [32, 63–72].Fig. 1


Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art.

Oberbauer E, Steffenhagen C, Wurzer C, Gabriel C, Redl H, Wolbank S - Cell Regen (Lond) (2015)

Adipose-derived cells: origin, immunophenotype, morphology, and differentiation potential. Lipoaspirate can be easily obtained from the patient and processed to obtain a heterogeneous cell population, the stromal vascular fraction (SVF). Adipose-derived stromal/stem cells (ASC) can be isolated from the SVF by in vitro cultivation on plastic surfaces. ASC are characterized mainly by mesenchymal stem cell marker (CD73, CD90, CD105) at the expense of hematopoietic stem cell marker (CD45) and their spindle-shaped morphology with the ability to differentiate into the adipogenic, osteogenic, and chondrogenic lineages. The differentiation potential can be analyzed by histological stainings, such as Oil red O for adipogenic, Alizarin red for osteogenic, and Alcian Blue for chondrogenic differentiation
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4591586&req=5

Fig1: Adipose-derived cells: origin, immunophenotype, morphology, and differentiation potential. Lipoaspirate can be easily obtained from the patient and processed to obtain a heterogeneous cell population, the stromal vascular fraction (SVF). Adipose-derived stromal/stem cells (ASC) can be isolated from the SVF by in vitro cultivation on plastic surfaces. ASC are characterized mainly by mesenchymal stem cell marker (CD73, CD90, CD105) at the expense of hematopoietic stem cell marker (CD45) and their spindle-shaped morphology with the ability to differentiate into the adipogenic, osteogenic, and chondrogenic lineages. The differentiation potential can be analyzed by histological stainings, such as Oil red O for adipogenic, Alizarin red for osteogenic, and Alcian Blue for chondrogenic differentiation
Mentions: ASC can be isolated from the SVF by in vitro cultivation on plastic surfaces, which results in the accumulation of spindle-shaped cells characterized by their self-renewal potency and ability to give rise to at least adipogenic, osteogenic, and chondrogenic lineages [33–35] (Fig. 1). Besides that, there is a growing body of evidence that these cells can generate a variety of other cell types including neuronal/glial-like cells [36–39], cardiomyocytes [40, 41], endothelial cells [42–44], hepatocyte-like cells [45, 46], various epithelial cell types [47–49], keratinocyte-like cells [50], and dental bud structures [51]. In addition to their extensive differentiation potential, ASC have been shown to secrete high levels of growth factors such as epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), keratinocyte growth factor (KGF), platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-β), insulin growth factor (IGF), and brain-derived neurotrophic factor (BDNF) [52]. The growth factors are secreted at bioactive levels and act primarily angiogenic and anti-apoptotic, and their secretion is significantly increased under hypoxic conditions [53–57]. Besides growth factors, ASC also release cytokines including fms-related tyrosine kinase 3 (Flt-3) ligand, granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage-colony stimulating factor (GM-CSF), macrophage-colony stimulating factor (M-CSF), interleukin (IL) such as IL-6, IL-7, IL-8, IL-11, and IL-12, leukemia inhibitory factor (LIF), and tumor necrosis factor-alpha (TNF-α) [44, 58]. Further, they are able to interact with cells of the immune system and have demonstrated to possess immunomodulatory and anti-inflammatory effects [59–62]. ASC have been successfully used in clinical studies and trials for treating soft tissue defects, bone defects, gastrointestinal lesions, immune disorders, neurological injuries, and cardiovascular diseases [32, 63–72].Fig. 1

Bottom Line: To isolate SVF from adipose tissue, enzymes such as collagenase are used.Alternatively, in order to avoid enzymes, isolation systems using physical forces are available.Here, we provide an overview of known existing enzymatic and non-enzymatic adipose tissue-derived cell isolation systems, which are patented, published, or already on the market.

View Article: PubMed Central - PubMed

Affiliation: Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria ; Austrian Cluster for Tissue Regeneration, Vienna, Austria.

ABSTRACT
In the past decade, adipose tissue became a highly interesting source of adult stem cells for plastic surgery and regenerative medicine. The isolated stromal vascular fraction (SVF) is a heterogeneous cell population including the adipose-derived stromal/stem cells (ASC), which showed regenerative potential in several clinical studies and trials. SVF should be provided in a safe and reproducible manner in accordance with current good manufacturing practices (cGMP). To ensure highest possible safety for patients, a precisely defined procedure with a high-quality control is required. Hence, an increasing number of adipose tissue-derived cell isolation systems have been developed. These systems aim for a closed, sterile, and safe isolation process limiting donor variations, risk for contaminations, and unpredictability of the cell material. To isolate SVF from adipose tissue, enzymes such as collagenase are used. Alternatively, in order to avoid enzymes, isolation systems using physical forces are available. Here, we provide an overview of known existing enzymatic and non-enzymatic adipose tissue-derived cell isolation systems, which are patented, published, or already on the market.

No MeSH data available.


Related in: MedlinePlus