Limits...
Feeding on resistant rice leads to enhanced expression of defender against apoptotic cell death (OoDAD1) in the Asian rice gall midge.

Sinha DK, Atray I, Bentur JS, Nair S - BMC Plant Biol. (2015)

Bottom Line: In contrast, expression in maggots feeding on RP2068 (resistant host) showed a steep increase of more than 8-fold at 24 hai and this level was sustained at 48, 72 and 96 hai when compared with the level in maggots feeding on Jaya at 24 hai.Recombinant OoDAD1, expressed in E. coli cells, when injected into rice seedlings induced a hypersensitive response (HR) in the resistant rice host, RP2068, but not in the susceptible rice variety, Jaya.The results indicate that the expression of OoDAD1 is triggered in the feeding maggots probably due to the host resistance response and therefore, is likely an important molecule in the initial stages of the interaction between the midge and its rice host.

View Article: PubMed Central - PubMed

Affiliation: Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110 067, India. deepak22sinha@yahoo.co.in.

ABSTRACT

Background: The Asian rice gall midge (Orseolia oryzae) is a destructive insect pest of rice. Gall midge infestation in rice triggers either compatible or incompatible interactions leading to survival or mortality of the feeding maggots, respectively. In incompatible interactions, generation of plant allelochemicals/defense molecules and/or inability of the maggots to continue feeding on the host initiate(s) apoptosis within the maggots. Unraveling these molecular events, triggered within the maggots as a response to feeding on resistant hosts, will enable us to obtain a better understanding of host resistance. The present study points towards the likely involvement of a defender against apoptotic cell death gene (DAD1) in the insect in response to the host defense.

Results: The cDNA coding for the DAD1 orthologue in the rice gall midge (OoDAD1) consisted of 339 nucleotides with one intron of 85 bp and two exons of 208 and 131 nucleotides. The deduced amino acid sequence of OoDAD1 showed a high degree of homology (94.6%) with DAD1 orthologue from the Hessian fly (Mayetiola destructor)--a major dipteran pest of wheat. Southern hybridization analysis indicated that OoDAD1 was present as a single copy in the genomes of the Asian rice gall midge biotypes (GMB) 1, 4 and 4 M. In the interactions involving GMB4 with Jaya (susceptible rice host) the expression level of OoDAD1 in feeding maggots gradually increased to 3-fold at 96 hai (hours after infestation) and peaked to 3.5-fold at 96 hai when compared to that at 24 hai. In contrast, expression in maggots feeding on RP2068 (resistant host) showed a steep increase of more than 8-fold at 24 hai and this level was sustained at 48, 72 and 96 hai when compared with the level in maggots feeding on Jaya at 24 hai. Recombinant OoDAD1, expressed in E. coli cells, when injected into rice seedlings induced a hypersensitive response (HR) in the resistant rice host, RP2068, but not in the susceptible rice variety, Jaya.

Conclusions: The results indicate that the expression of OoDAD1 is triggered in the feeding maggots probably due to the host resistance response and therefore, is likely an important molecule in the initial stages of the interaction between the midge and its rice host.

No MeSH data available.


Related in: MedlinePlus

HR response of gall midge resistant rice injected with recombinant OoDAD1. Plant injection assay showing induction of HR response in the gall midge resistant rice variety, RP2068, upon injection with recombinant OoDAD1. RP2068 injected with a purified protein; b protein elution buffer; c BSA dissolved in protein elution buffer. Black dots indicate the markings made prior to injection for easy localization of injected regions
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4591563&req=5

Fig6: HR response of gall midge resistant rice injected with recombinant OoDAD1. Plant injection assay showing induction of HR response in the gall midge resistant rice variety, RP2068, upon injection with recombinant OoDAD1. RP2068 injected with a purified protein; b protein elution buffer; c BSA dissolved in protein elution buffer. Black dots indicate the markings made prior to injection for easy localization of injected regions

Mentions: The purified OoDAD1 protein (purified using Ni-NTA column), the protein elution buffer and water injection into the host variety RP2068, initiated HR. However, the observed spread of HR in RP2068 (Fig.6a) was more in plants injected with OoDAD1 when compared with the plants injected with buffer and BSA. However, no HR was observed in Jaya plants after injection (Additional file 3: Figure S3). The injection region of the plants when stained with DAB showed brown coloration in Suraksha after 48 h post injection and after 72 h post injection in RP2068 (Fig. 7). DAB staining produces brown coloration in tissues having increased peroxidase activity (increased production of reactive oxygen species) and is used as a marker for hypersensitivity in plants.Fig. 6


Feeding on resistant rice leads to enhanced expression of defender against apoptotic cell death (OoDAD1) in the Asian rice gall midge.

Sinha DK, Atray I, Bentur JS, Nair S - BMC Plant Biol. (2015)

HR response of gall midge resistant rice injected with recombinant OoDAD1. Plant injection assay showing induction of HR response in the gall midge resistant rice variety, RP2068, upon injection with recombinant OoDAD1. RP2068 injected with a purified protein; b protein elution buffer; c BSA dissolved in protein elution buffer. Black dots indicate the markings made prior to injection for easy localization of injected regions
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4591563&req=5

Fig6: HR response of gall midge resistant rice injected with recombinant OoDAD1. Plant injection assay showing induction of HR response in the gall midge resistant rice variety, RP2068, upon injection with recombinant OoDAD1. RP2068 injected with a purified protein; b protein elution buffer; c BSA dissolved in protein elution buffer. Black dots indicate the markings made prior to injection for easy localization of injected regions
Mentions: The purified OoDAD1 protein (purified using Ni-NTA column), the protein elution buffer and water injection into the host variety RP2068, initiated HR. However, the observed spread of HR in RP2068 (Fig.6a) was more in plants injected with OoDAD1 when compared with the plants injected with buffer and BSA. However, no HR was observed in Jaya plants after injection (Additional file 3: Figure S3). The injection region of the plants when stained with DAB showed brown coloration in Suraksha after 48 h post injection and after 72 h post injection in RP2068 (Fig. 7). DAB staining produces brown coloration in tissues having increased peroxidase activity (increased production of reactive oxygen species) and is used as a marker for hypersensitivity in plants.Fig. 6

Bottom Line: In contrast, expression in maggots feeding on RP2068 (resistant host) showed a steep increase of more than 8-fold at 24 hai and this level was sustained at 48, 72 and 96 hai when compared with the level in maggots feeding on Jaya at 24 hai.Recombinant OoDAD1, expressed in E. coli cells, when injected into rice seedlings induced a hypersensitive response (HR) in the resistant rice host, RP2068, but not in the susceptible rice variety, Jaya.The results indicate that the expression of OoDAD1 is triggered in the feeding maggots probably due to the host resistance response and therefore, is likely an important molecule in the initial stages of the interaction between the midge and its rice host.

View Article: PubMed Central - PubMed

Affiliation: Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110 067, India. deepak22sinha@yahoo.co.in.

ABSTRACT

Background: The Asian rice gall midge (Orseolia oryzae) is a destructive insect pest of rice. Gall midge infestation in rice triggers either compatible or incompatible interactions leading to survival or mortality of the feeding maggots, respectively. In incompatible interactions, generation of plant allelochemicals/defense molecules and/or inability of the maggots to continue feeding on the host initiate(s) apoptosis within the maggots. Unraveling these molecular events, triggered within the maggots as a response to feeding on resistant hosts, will enable us to obtain a better understanding of host resistance. The present study points towards the likely involvement of a defender against apoptotic cell death gene (DAD1) in the insect in response to the host defense.

Results: The cDNA coding for the DAD1 orthologue in the rice gall midge (OoDAD1) consisted of 339 nucleotides with one intron of 85 bp and two exons of 208 and 131 nucleotides. The deduced amino acid sequence of OoDAD1 showed a high degree of homology (94.6%) with DAD1 orthologue from the Hessian fly (Mayetiola destructor)--a major dipteran pest of wheat. Southern hybridization analysis indicated that OoDAD1 was present as a single copy in the genomes of the Asian rice gall midge biotypes (GMB) 1, 4 and 4 M. In the interactions involving GMB4 with Jaya (susceptible rice host) the expression level of OoDAD1 in feeding maggots gradually increased to 3-fold at 96 hai (hours after infestation) and peaked to 3.5-fold at 96 hai when compared to that at 24 hai. In contrast, expression in maggots feeding on RP2068 (resistant host) showed a steep increase of more than 8-fold at 24 hai and this level was sustained at 48, 72 and 96 hai when compared with the level in maggots feeding on Jaya at 24 hai. Recombinant OoDAD1, expressed in E. coli cells, when injected into rice seedlings induced a hypersensitive response (HR) in the resistant rice host, RP2068, but not in the susceptible rice variety, Jaya.

Conclusions: The results indicate that the expression of OoDAD1 is triggered in the feeding maggots probably due to the host resistance response and therefore, is likely an important molecule in the initial stages of the interaction between the midge and its rice host.

No MeSH data available.


Related in: MedlinePlus