Limits...
Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat.

Saia S, Rappa V, Ruisi P, Abenavoli MR, Sunseri F, Giambalvo D, Frenda AS, Martinelli F - Front Plant Sci (2015)

Bottom Line: In a field experiment conducted in a Mediterranean area of inner Sicily, durum wheat was inoculated with plant growth-promoting rhizobacteria (PGPR), with arbuscular mycorrhizal fungi (AMF), or with both to evaluate their effects on nutrient uptake, plant growth, and the expression of key transporter genes involved in nitrogen (N) and phosphorus (P) uptake.A significant down-regulation of the same genes was observed when organic N was added.The ammonium (NH4 (+)) transporter genes AMT1.2 showed an expression pattern similar to that of the NO3 (-) transporters.

View Article: PubMed Central - PubMed

Affiliation: Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo Palermo, Italy ; Fondazione A. e S. Lima Mancuso, Università degli Studi di Palermo Palermo, Italy.

ABSTRACT
In a field experiment conducted in a Mediterranean area of inner Sicily, durum wheat was inoculated with plant growth-promoting rhizobacteria (PGPR), with arbuscular mycorrhizal fungi (AMF), or with both to evaluate their effects on nutrient uptake, plant growth, and the expression of key transporter genes involved in nitrogen (N) and phosphorus (P) uptake. These biotic associations were studied under either low N availability (unfertilized plots) and supplying the soil with an easily mineralizable organic fertilizer. Regardless of N fertilization, at the tillering stage, inoculation with AMF alone or in combination with PGPR increased the aboveground biomass yield compared to the uninoculated control. Inoculation with PGPR enhanced the aboveground biomass yield compared to the control, but only when N fertilizer was added. At the heading stage, inoculation with all microorganisms increased the aboveground biomass and N. Inoculation with PGPR and AMF+PGPR resulted in significantly higher aboveground P compared to the control and inoculation with AMF only when organic N was applied. The role of microbe inoculation in N uptake was elucidated by the expression of nitrate transporter genes. NRT1.1, NRT2, and NAR2.2 were significantly upregulated by inoculation with AMF and AMF+PGPR in the absence of organic N. A significant down-regulation of the same genes was observed when organic N was added. The ammonium (NH4 (+)) transporter genes AMT1.2 showed an expression pattern similar to that of the NO3 (-) transporters. Finally, in the absence of organic N, the transcript abundance of P transporters Pht1 and PT2-1 was increased by inoculation with AMF+PGPR, and inoculation with AMF upregulated Pht2 compared to the uninoculated control. These results indicate the soil inoculation with AMF and PGPR (alone or in combination) as a valuable option for farmers to improve yield, nutrient uptake, and the sustainability of the agro-ecosystem.

No MeSH data available.


Related in: MedlinePlus

Canonical discriminant analysis constructed with the gene expression data of T. durum root. Percentage of total variance explained by each canonical axis is shown in parentheses. Percentages of variance explained by Can 3 to Can 7 were not significant (data not shown). Plants were grown under the unfertilized conditions (U, yellow symbols) or fertilized with an organic fertilized with low C:N ratio (F, green symbols). Soil was left with the NAT (circles); inoculated with only AMF spores (triangles); only plant PGPR (diamonds), or both AMF+PGPR (squares). Nitrate transporters vectors are shown in red, AMTs vector in blue and phosphorus transporters vector in black. Each symbol represents the treatment centroid within Can 1 and Can 2. Bars represent the standard error of the distribution of each treatment.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4591488&req=5

Figure 4: Canonical discriminant analysis constructed with the gene expression data of T. durum root. Percentage of total variance explained by each canonical axis is shown in parentheses. Percentages of variance explained by Can 3 to Can 7 were not significant (data not shown). Plants were grown under the unfertilized conditions (U, yellow symbols) or fertilized with an organic fertilized with low C:N ratio (F, green symbols). Soil was left with the NAT (circles); inoculated with only AMF spores (triangles); only plant PGPR (diamonds), or both AMF+PGPR (squares). Nitrate transporters vectors are shown in red, AMTs vector in blue and phosphorus transporters vector in black. Each symbol represents the treatment centroid within Can 1 and Can 2. Bars represent the standard error of the distribution of each treatment.

Mentions: Canonical Variable (Can) 1 accounted for 86% of the total variance (P < 0.001) and Can 2 accounted for 8% of the total variance (P = 0.008). Can 1 mostly varied according to NRT2 (score = -9.41) and NAR2.2 (score = +4.91), whereas Can 2 was mostly influenced by AMT1.2, NRT2, and NAR2.2 (scores = -1.92, 1.60, and 1.08, respectively). Can 1 did not discriminate among fertilized and unfertilized treatments. CDA (Figure 4) clearly differentiated samples from AMF-inoculated, unfertilized plots from all other treatments (with P > Mahalanobis distance always less than 0.003), whereas the other treatments (i.e., unfertilized NAT and unfertilized PGPR and all the fertilized treatments) were grouped together.


Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat.

Saia S, Rappa V, Ruisi P, Abenavoli MR, Sunseri F, Giambalvo D, Frenda AS, Martinelli F - Front Plant Sci (2015)

Canonical discriminant analysis constructed with the gene expression data of T. durum root. Percentage of total variance explained by each canonical axis is shown in parentheses. Percentages of variance explained by Can 3 to Can 7 were not significant (data not shown). Plants were grown under the unfertilized conditions (U, yellow symbols) or fertilized with an organic fertilized with low C:N ratio (F, green symbols). Soil was left with the NAT (circles); inoculated with only AMF spores (triangles); only plant PGPR (diamonds), or both AMF+PGPR (squares). Nitrate transporters vectors are shown in red, AMTs vector in blue and phosphorus transporters vector in black. Each symbol represents the treatment centroid within Can 1 and Can 2. Bars represent the standard error of the distribution of each treatment.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4591488&req=5

Figure 4: Canonical discriminant analysis constructed with the gene expression data of T. durum root. Percentage of total variance explained by each canonical axis is shown in parentheses. Percentages of variance explained by Can 3 to Can 7 were not significant (data not shown). Plants were grown under the unfertilized conditions (U, yellow symbols) or fertilized with an organic fertilized with low C:N ratio (F, green symbols). Soil was left with the NAT (circles); inoculated with only AMF spores (triangles); only plant PGPR (diamonds), or both AMF+PGPR (squares). Nitrate transporters vectors are shown in red, AMTs vector in blue and phosphorus transporters vector in black. Each symbol represents the treatment centroid within Can 1 and Can 2. Bars represent the standard error of the distribution of each treatment.
Mentions: Canonical Variable (Can) 1 accounted for 86% of the total variance (P < 0.001) and Can 2 accounted for 8% of the total variance (P = 0.008). Can 1 mostly varied according to NRT2 (score = -9.41) and NAR2.2 (score = +4.91), whereas Can 2 was mostly influenced by AMT1.2, NRT2, and NAR2.2 (scores = -1.92, 1.60, and 1.08, respectively). Can 1 did not discriminate among fertilized and unfertilized treatments. CDA (Figure 4) clearly differentiated samples from AMF-inoculated, unfertilized plots from all other treatments (with P > Mahalanobis distance always less than 0.003), whereas the other treatments (i.e., unfertilized NAT and unfertilized PGPR and all the fertilized treatments) were grouped together.

Bottom Line: In a field experiment conducted in a Mediterranean area of inner Sicily, durum wheat was inoculated with plant growth-promoting rhizobacteria (PGPR), with arbuscular mycorrhizal fungi (AMF), or with both to evaluate their effects on nutrient uptake, plant growth, and the expression of key transporter genes involved in nitrogen (N) and phosphorus (P) uptake.A significant down-regulation of the same genes was observed when organic N was added.The ammonium (NH4 (+)) transporter genes AMT1.2 showed an expression pattern similar to that of the NO3 (-) transporters.

View Article: PubMed Central - PubMed

Affiliation: Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo Palermo, Italy ; Fondazione A. e S. Lima Mancuso, Università degli Studi di Palermo Palermo, Italy.

ABSTRACT
In a field experiment conducted in a Mediterranean area of inner Sicily, durum wheat was inoculated with plant growth-promoting rhizobacteria (PGPR), with arbuscular mycorrhizal fungi (AMF), or with both to evaluate their effects on nutrient uptake, plant growth, and the expression of key transporter genes involved in nitrogen (N) and phosphorus (P) uptake. These biotic associations were studied under either low N availability (unfertilized plots) and supplying the soil with an easily mineralizable organic fertilizer. Regardless of N fertilization, at the tillering stage, inoculation with AMF alone or in combination with PGPR increased the aboveground biomass yield compared to the uninoculated control. Inoculation with PGPR enhanced the aboveground biomass yield compared to the control, but only when N fertilizer was added. At the heading stage, inoculation with all microorganisms increased the aboveground biomass and N. Inoculation with PGPR and AMF+PGPR resulted in significantly higher aboveground P compared to the control and inoculation with AMF only when organic N was applied. The role of microbe inoculation in N uptake was elucidated by the expression of nitrate transporter genes. NRT1.1, NRT2, and NAR2.2 were significantly upregulated by inoculation with AMF and AMF+PGPR in the absence of organic N. A significant down-regulation of the same genes was observed when organic N was added. The ammonium (NH4 (+)) transporter genes AMT1.2 showed an expression pattern similar to that of the NO3 (-) transporters. Finally, in the absence of organic N, the transcript abundance of P transporters Pht1 and PT2-1 was increased by inoculation with AMF+PGPR, and inoculation with AMF upregulated Pht2 compared to the uninoculated control. These results indicate the soil inoculation with AMF and PGPR (alone or in combination) as a valuable option for farmers to improve yield, nutrient uptake, and the sustainability of the agro-ecosystem.

No MeSH data available.


Related in: MedlinePlus