Limits...
Robust Eye Center Localization through Face Alignment and Invariant Isocentric Patterns.

Pang Z, Wei C, Teng D, Chen D, Tan H - PLoS ONE (2015)

Bottom Line: In addition, we apply our method to non-frontal faces to test its robustness and accuracy, which are essential in gaze estimation but have seldom been mentioned in previous works.Through extensive experimentation, we show that the proposed method can achieve a significant improvement in accuracy and robustness over state-of-the-art techniques, with our method ranking second in terms of accuracy.According to our implementation on a PC with a Xeon 2.5Ghz CPU, the frame rate of the eye tracking process can achieve 38 Hz.

View Article: PubMed Central - PubMed

Affiliation: School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, China.

ABSTRACT
The localization of eye centers is a very useful cue for numerous applications like face recognition, facial expression recognition, and the early screening of neurological pathologies. Several methods relying on available light for accurate eye-center localization have been exploited. However, despite the considerable improvements that eye-center localization systems have undergone in recent years, only few of these developments deal with the challenges posed by the profile (non-frontal face). In this paper, we first use the explicit shape regression method to obtain the rough location of the eye centers. Because this method extracts global information from the human face, it is robust against any changes in the eye region. We exploit this robustness and utilize it as a constraint. To locate the eye centers accurately, we employ isophote curvature features, the accuracy of which has been demonstrated in a previous study. By applying these features, we obtain a series of eye-center locations which are candidates for the actual position of the eye-center. Among these locations, the estimated locations which minimize the reconstruction error between the two methods mentioned above are taken as the closest approximation for the eye centers locations. Therefore, we combine explicit shape regression and isophote curvature feature analysis to achieve robustness and accuracy, respectively. In practical experiments, we use BioID and FERET datasets to test our approach to obtaining an accurate eye-center location while retaining robustness against changes in scale and pose. In addition, we apply our method to non-frontal faces to test its robustness and accuracy, which are essential in gaze estimation but have seldom been mentioned in previous works. Through extensive experimentation, we show that the proposed method can achieve a significant improvement in accuracy and robustness over state-of-the-art techniques, with our method ranking second in terms of accuracy. According to our implementation on a PC with a Xeon 2.5Ghz CPU, the frame rate of the eye tracking process can achieve 38 Hz.

No MeSH data available.


Related in: MedlinePlus

Selected BioID maximum isocenter (MIC) results.The first row shows correct results, where the real eye-center is identified, while the second row shows some typical errors due to non-ideal images.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4591357&req=5

pone.0139098.g003: Selected BioID maximum isocenter (MIC) results.The first row shows correct results, where the real eye-center is identified, while the second row shows some typical errors due to non-ideal images.

Mentions: In most cases, the MIC in the center map is the real eye center, as illustrated in the first row of Fig 3. However, in some non-ideal cases, the MIC may not represent the real eye center, as can be seen in the second row of Fig 3. Obtaining several candidate MICs from different center maps could be an effective strategy to overcoming these issues.


Robust Eye Center Localization through Face Alignment and Invariant Isocentric Patterns.

Pang Z, Wei C, Teng D, Chen D, Tan H - PLoS ONE (2015)

Selected BioID maximum isocenter (MIC) results.The first row shows correct results, where the real eye-center is identified, while the second row shows some typical errors due to non-ideal images.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4591357&req=5

pone.0139098.g003: Selected BioID maximum isocenter (MIC) results.The first row shows correct results, where the real eye-center is identified, while the second row shows some typical errors due to non-ideal images.
Mentions: In most cases, the MIC in the center map is the real eye center, as illustrated in the first row of Fig 3. However, in some non-ideal cases, the MIC may not represent the real eye center, as can be seen in the second row of Fig 3. Obtaining several candidate MICs from different center maps could be an effective strategy to overcoming these issues.

Bottom Line: In addition, we apply our method to non-frontal faces to test its robustness and accuracy, which are essential in gaze estimation but have seldom been mentioned in previous works.Through extensive experimentation, we show that the proposed method can achieve a significant improvement in accuracy and robustness over state-of-the-art techniques, with our method ranking second in terms of accuracy.According to our implementation on a PC with a Xeon 2.5Ghz CPU, the frame rate of the eye tracking process can achieve 38 Hz.

View Article: PubMed Central - PubMed

Affiliation: School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, China.

ABSTRACT
The localization of eye centers is a very useful cue for numerous applications like face recognition, facial expression recognition, and the early screening of neurological pathologies. Several methods relying on available light for accurate eye-center localization have been exploited. However, despite the considerable improvements that eye-center localization systems have undergone in recent years, only few of these developments deal with the challenges posed by the profile (non-frontal face). In this paper, we first use the explicit shape regression method to obtain the rough location of the eye centers. Because this method extracts global information from the human face, it is robust against any changes in the eye region. We exploit this robustness and utilize it as a constraint. To locate the eye centers accurately, we employ isophote curvature features, the accuracy of which has been demonstrated in a previous study. By applying these features, we obtain a series of eye-center locations which are candidates for the actual position of the eye-center. Among these locations, the estimated locations which minimize the reconstruction error between the two methods mentioned above are taken as the closest approximation for the eye centers locations. Therefore, we combine explicit shape regression and isophote curvature feature analysis to achieve robustness and accuracy, respectively. In practical experiments, we use BioID and FERET datasets to test our approach to obtaining an accurate eye-center location while retaining robustness against changes in scale and pose. In addition, we apply our method to non-frontal faces to test its robustness and accuracy, which are essential in gaze estimation but have seldom been mentioned in previous works. Through extensive experimentation, we show that the proposed method can achieve a significant improvement in accuracy and robustness over state-of-the-art techniques, with our method ranking second in terms of accuracy. According to our implementation on a PC with a Xeon 2.5Ghz CPU, the frame rate of the eye tracking process can achieve 38 Hz.

No MeSH data available.


Related in: MedlinePlus