Limits...
Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction.

Pettersson M, Quant M, Min J, Iconaru L, Kriwacki RW, Waddell MB, Guy RK, Luthman K, Grøtli M - PLoS ONE (2015)

Bottom Line: The key step of the synthesis involved the cyclisation of substituted dipeptides.The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis.This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden.

ABSTRACT
The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2) via a direct protein-protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.

No MeSH data available.


Related in: MedlinePlus

N4-Alkylation of non-spiro-DKPs afforded 40–45.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4591261&req=5

pone.0137867.g013: N4-Alkylation of non-spiro-DKPs afforded 40–45.

Mentions: The BEMP alkylation protocol was also used to synthesise compounds 40–45 (Fig 13). The lower yields obtained for 41RR, 41RS, 42RS, 43RS and 44RS are ascribed to impurities carried through from the previous synthetic steps. The introduction of electron-deficient substituents at the N1- and C6-positions resulted in epimerisation at the C6-position (Fig 13, entries 6–10). The diastereomeric ratio was determined from 1H NMR spectra. The diastereomeric mixture could be separated by silica column chromatography and 45SS and 45SR were isolated as single enantiomers (Fig 13, entries 11–12).


Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction.

Pettersson M, Quant M, Min J, Iconaru L, Kriwacki RW, Waddell MB, Guy RK, Luthman K, Grøtli M - PLoS ONE (2015)

N4-Alkylation of non-spiro-DKPs afforded 40–45.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4591261&req=5

pone.0137867.g013: N4-Alkylation of non-spiro-DKPs afforded 40–45.
Mentions: The BEMP alkylation protocol was also used to synthesise compounds 40–45 (Fig 13). The lower yields obtained for 41RR, 41RS, 42RS, 43RS and 44RS are ascribed to impurities carried through from the previous synthetic steps. The introduction of electron-deficient substituents at the N1- and C6-positions resulted in epimerisation at the C6-position (Fig 13, entries 6–10). The diastereomeric ratio was determined from 1H NMR spectra. The diastereomeric mixture could be separated by silica column chromatography and 45SS and 45SR were isolated as single enantiomers (Fig 13, entries 11–12).

Bottom Line: The key step of the synthesis involved the cyclisation of substituted dipeptides.The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis.This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden.

ABSTRACT
The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2) via a direct protein-protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.

No MeSH data available.


Related in: MedlinePlus