Limits...
Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction.

Pettersson M, Quant M, Min J, Iconaru L, Kriwacki RW, Waddell MB, Guy RK, Luthman K, Grøtli M - PLoS ONE (2015)

Bottom Line: The key step of the synthesis involved the cyclisation of substituted dipeptides.The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis.This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden.

ABSTRACT
The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2) via a direct protein-protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.

No MeSH data available.


Related in: MedlinePlus

Synthesis of non-spiro-DKPs 22–29.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4591261&req=5

pone.0137867.g009: Synthesis of non-spiro-DKPs 22–29.

Mentions: The same Ugi reaction protocol was used for the synthesis of non-spiro-DKPs (Fig 9). The yields were however generally lower compared with those for the spiro-2-DKPs (Fig 8). When an aldehyde was used instead of a cyclic ketone, the products were obtained as diastereomeric mixtures; the stereoisomers could be separated by silica column chromatography. Compounds 22RR and 22RS were isolated in a combined yield of 39%, while 23RR and 23RS were isolated in a combined yield of 29%.


Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction.

Pettersson M, Quant M, Min J, Iconaru L, Kriwacki RW, Waddell MB, Guy RK, Luthman K, Grøtli M - PLoS ONE (2015)

Synthesis of non-spiro-DKPs 22–29.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4591261&req=5

pone.0137867.g009: Synthesis of non-spiro-DKPs 22–29.
Mentions: The same Ugi reaction protocol was used for the synthesis of non-spiro-DKPs (Fig 9). The yields were however generally lower compared with those for the spiro-2-DKPs (Fig 8). When an aldehyde was used instead of a cyclic ketone, the products were obtained as diastereomeric mixtures; the stereoisomers could be separated by silica column chromatography. Compounds 22RR and 22RS were isolated in a combined yield of 39%, while 23RR and 23RS were isolated in a combined yield of 29%.

Bottom Line: The key step of the synthesis involved the cyclisation of substituted dipeptides.The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis.This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden.

ABSTRACT
The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2) via a direct protein-protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.

No MeSH data available.


Related in: MedlinePlus