Limits...
Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method.

Sun H, Zhao P, Zhang F, Liu Y, Hao J - Nanoscale Res Lett (2015)

Bottom Line: The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared.The cycles of local deposition have great influence on their photoelectric properties.The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, People's Republic of China.

ABSTRACT
Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor-Ag2S (0.9 eV) quantum dots (QDs)-in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

No MeSH data available.


Related in: MedlinePlus

A The UV-vis absorption spectra of array films of TNTs (a), CdS/TNTs (b), Ag2S/TNTs (c), Ag2S/CdS/TNTs by SSM (d), and Ag2S/CdS/TNTs via SILAR (e). B The UV-vis absorbance of the Ag2S/CdS/TNTs by SSM with different deposition cycles of CdS and TiO2
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4591224&req=5

Fig6: A The UV-vis absorption spectra of array films of TNTs (a), CdS/TNTs (b), Ag2S/TNTs (c), Ag2S/CdS/TNTs by SSM (d), and Ag2S/CdS/TNTs via SILAR (e). B The UV-vis absorbance of the Ag2S/CdS/TNTs by SSM with different deposition cycles of CdS and TiO2

Mentions: Figure 6a shows the UV-vis absorption spectra of array films of TNTs, CdS/TNTs, Ag2S/TNTs, Ag2S/CdS/TNTs by SSM, and Ag2S/CdS/TNTs via SILAR. The Ag2S/CdS/TNTs via SILAR was produced by depositing Ag2S via SILAR method on the whole film of CdS/TNTs. Both CdS and Ag2S were deposited for 6 cycles. The addition of CdS resulted in an additional absorption band in the UV-vis region (320–530 nm). Compared with TNTs, the absorption of Ag2S/TNTs extends to a longer wavelength up to 800 nm, corresponding to the narrow bandgap of Ag2S (0.9 eV). Both Ag2S/CdS/TNTs by SSM and Ag2S/CdS/TNTs via SILAR show an obvious absorption in light range (320–800 nm), indicating that the Ag2S and CdS deposited onto the TiO2 nanotube arrays can increase the visible light absorption. As shown in Fig. 6a (a), TNTs fabricated by anodic oxidation not only have strong absorption in the UV region but also have a certain degree of absorption in visible range (400–800 nm). When CdS particles were deposited on the TNTs, the absorption of the TNTs was decreased accordingly in visible range (400–800 nm). So, as shown in Fig. 6a (b), CdS/TNTs has a lower absorbance than TNTs under the visible spectrum (500–800 nm). This is also the reason that sample d (Ag2S/CdS/TNTs by SSM) has a lower absorbance than sample c (Ag2S/TNTs) under the visible light spectrum (500–800 nm). Figure 6b shows the UV-vis absorbance of the Ag2S/CdS/TNTs by SSM with different deposition cycles of CdS and TiO2, and the absorbance increases firstly and then decreases with the increase of the deposition cycles. The Ag2S/CdS/TNTs by SSM with 6 deposition cycles has stronger absorbance in UV-vis range, which indicates that an optimum amount of doping of Ag2S and CdS can benefit the optical property of TNTs. At first, the absorption of Ag2S/CdS/TNTs by SSM under UV-vis regions increased with an increase of Ag2S and CdS particles. But, with further depositing and aggregation of the particles, large particles exhibit increased light scattering [32], so the absorbance of Ag2S/CdS/TNTs by SSM then decreased.Fig. 6


Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method.

Sun H, Zhao P, Zhang F, Liu Y, Hao J - Nanoscale Res Lett (2015)

A The UV-vis absorption spectra of array films of TNTs (a), CdS/TNTs (b), Ag2S/TNTs (c), Ag2S/CdS/TNTs by SSM (d), and Ag2S/CdS/TNTs via SILAR (e). B The UV-vis absorbance of the Ag2S/CdS/TNTs by SSM with different deposition cycles of CdS and TiO2
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4591224&req=5

Fig6: A The UV-vis absorption spectra of array films of TNTs (a), CdS/TNTs (b), Ag2S/TNTs (c), Ag2S/CdS/TNTs by SSM (d), and Ag2S/CdS/TNTs via SILAR (e). B The UV-vis absorbance of the Ag2S/CdS/TNTs by SSM with different deposition cycles of CdS and TiO2
Mentions: Figure 6a shows the UV-vis absorption spectra of array films of TNTs, CdS/TNTs, Ag2S/TNTs, Ag2S/CdS/TNTs by SSM, and Ag2S/CdS/TNTs via SILAR. The Ag2S/CdS/TNTs via SILAR was produced by depositing Ag2S via SILAR method on the whole film of CdS/TNTs. Both CdS and Ag2S were deposited for 6 cycles. The addition of CdS resulted in an additional absorption band in the UV-vis region (320–530 nm). Compared with TNTs, the absorption of Ag2S/TNTs extends to a longer wavelength up to 800 nm, corresponding to the narrow bandgap of Ag2S (0.9 eV). Both Ag2S/CdS/TNTs by SSM and Ag2S/CdS/TNTs via SILAR show an obvious absorption in light range (320–800 nm), indicating that the Ag2S and CdS deposited onto the TiO2 nanotube arrays can increase the visible light absorption. As shown in Fig. 6a (a), TNTs fabricated by anodic oxidation not only have strong absorption in the UV region but also have a certain degree of absorption in visible range (400–800 nm). When CdS particles were deposited on the TNTs, the absorption of the TNTs was decreased accordingly in visible range (400–800 nm). So, as shown in Fig. 6a (b), CdS/TNTs has a lower absorbance than TNTs under the visible spectrum (500–800 nm). This is also the reason that sample d (Ag2S/CdS/TNTs by SSM) has a lower absorbance than sample c (Ag2S/TNTs) under the visible light spectrum (500–800 nm). Figure 6b shows the UV-vis absorbance of the Ag2S/CdS/TNTs by SSM with different deposition cycles of CdS and TiO2, and the absorbance increases firstly and then decreases with the increase of the deposition cycles. The Ag2S/CdS/TNTs by SSM with 6 deposition cycles has stronger absorbance in UV-vis range, which indicates that an optimum amount of doping of Ag2S and CdS can benefit the optical property of TNTs. At first, the absorption of Ag2S/CdS/TNTs by SSM under UV-vis regions increased with an increase of Ag2S and CdS particles. But, with further depositing and aggregation of the particles, large particles exhibit increased light scattering [32], so the absorbance of Ag2S/CdS/TNTs by SSM then decreased.Fig. 6

Bottom Line: The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared.The cycles of local deposition have great influence on their photoelectric properties.The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, People's Republic of China.

ABSTRACT
Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor-Ag2S (0.9 eV) quantum dots (QDs)-in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

No MeSH data available.


Related in: MedlinePlus