Limits...
Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method.

Sun H, Zhao P, Zhang F, Liu Y, Hao J - Nanoscale Res Lett (2015)

Bottom Line: The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared.The cycles of local deposition have great influence on their photoelectric properties.The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, People's Republic of China.

ABSTRACT
Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor-Ag2S (0.9 eV) quantum dots (QDs)-in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

No MeSH data available.


Related in: MedlinePlus

a–i The TEM and HR-TEM images of TNTs (a), CdS/TNTs (b), and Ag2S/CdS/TNTs by SSM (c,d). EDX spectrum (e) of the Ag2S/CdS/TNTs by SSM (the inset is the table of elements content) and the corresponding EDX elemental mapping (f) of the total elemental mapping of major elements (Ti, Cd and Ag).  
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4591224&req=5

Fig3: a–i The TEM and HR-TEM images of TNTs (a), CdS/TNTs (b), and Ag2S/CdS/TNTs by SSM (c,d). EDX spectrum (e) of the Ag2S/CdS/TNTs by SSM (the inset is the table of elements content) and the corresponding EDX elemental mapping (f) of the total elemental mapping of major elements (Ti, Cd and Ag).  

Mentions: Figure 3 shows the TEM and HR-TEM images of TNTs, CdS/TNTs, and Ag2S/CdS/TNTs by SSM. As seen from the TEM images of fracture surfaces of a TiO2 nanotube (Fig. 3a), the inner surface is very smooth. Figure 3b shows that CdS particles get into the TiO2 nanotubes. Unlike Fig. 3a, some particles were introduced inside the nanotubes. For porous TNTs, the tubes pack closely with each other and CdS did not deposit on the outer wall of the TiO2 nanotubes. Figure 3c shows the TEM image of the TiO2 nanotubes deposited with CdS and Ag2S. From the TEM images, one can see that there is no obvious difference between Fig. 3c and Fig. 3b HR-TEM images; Fig. 3d shows some particles deposited on the wall of the TiO2 nanotube. Lattice fringes of 0.35 nm were observed in detailed microscopic structures of the TiO2 nanotubes, corresponding to the (101) plane of anatase (JCPDS file no. 71-1167), suggesting that the TiO2 nanotubes are well crystalline structures. The particle diameters are about 6~10 nm inside the TiO2 nanotubes, and the lattice fringes are obviously different from the lattice fringes of the TiO2 nanotubes. These particles are CdS or Ag2S. Lattice fringes of 0.30 nm were observed, which corresponds to the (111) plane of the acanthite Ag2S (JCPDS file no. 14-0072), and approximately 0.33 nm corresponds to the (111) plane of the cubic phase of CdS (JCPDS file no. 80-0019). In order to further identify the elemental composition and where CdS and Ag2S particles were deposited, an area of TNTs deposited with CdS and Ag2S is chosen to analyze the corresponding EDX and EDX elemental mapping. As shown in Fig. 3e, O, S, Ti, Ag, and Cd can be identified. The quantitative analysis reveals that the atomic composition of O, S, Ti, Ag, and Cd is 51.87, 2.57, 41.64, 1.96, and 1.96 %, respectively. With a molar ratio of Ag to Cd at 1:1, we may calculate the molar ratio of Ag2S to CdS at 1:2. We calculated that S should be 2.94 %, which is close to 2.57 % and confirms the formation of Ag2S and CdS. Elemental mapping of Ag2S/CdS/TNTs-S, Fig. 3f–i, shows that Ag2S and CdS were deposited inside the TiO2 nanotubes uniformly.Fig. 3


Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method.

Sun H, Zhao P, Zhang F, Liu Y, Hao J - Nanoscale Res Lett (2015)

a–i The TEM and HR-TEM images of TNTs (a), CdS/TNTs (b), and Ag2S/CdS/TNTs by SSM (c,d). EDX spectrum (e) of the Ag2S/CdS/TNTs by SSM (the inset is the table of elements content) and the corresponding EDX elemental mapping (f) of the total elemental mapping of major elements (Ti, Cd and Ag).  
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4591224&req=5

Fig3: a–i The TEM and HR-TEM images of TNTs (a), CdS/TNTs (b), and Ag2S/CdS/TNTs by SSM (c,d). EDX spectrum (e) of the Ag2S/CdS/TNTs by SSM (the inset is the table of elements content) and the corresponding EDX elemental mapping (f) of the total elemental mapping of major elements (Ti, Cd and Ag).  
Mentions: Figure 3 shows the TEM and HR-TEM images of TNTs, CdS/TNTs, and Ag2S/CdS/TNTs by SSM. As seen from the TEM images of fracture surfaces of a TiO2 nanotube (Fig. 3a), the inner surface is very smooth. Figure 3b shows that CdS particles get into the TiO2 nanotubes. Unlike Fig. 3a, some particles were introduced inside the nanotubes. For porous TNTs, the tubes pack closely with each other and CdS did not deposit on the outer wall of the TiO2 nanotubes. Figure 3c shows the TEM image of the TiO2 nanotubes deposited with CdS and Ag2S. From the TEM images, one can see that there is no obvious difference between Fig. 3c and Fig. 3b HR-TEM images; Fig. 3d shows some particles deposited on the wall of the TiO2 nanotube. Lattice fringes of 0.35 nm were observed in detailed microscopic structures of the TiO2 nanotubes, corresponding to the (101) plane of anatase (JCPDS file no. 71-1167), suggesting that the TiO2 nanotubes are well crystalline structures. The particle diameters are about 6~10 nm inside the TiO2 nanotubes, and the lattice fringes are obviously different from the lattice fringes of the TiO2 nanotubes. These particles are CdS or Ag2S. Lattice fringes of 0.30 nm were observed, which corresponds to the (111) plane of the acanthite Ag2S (JCPDS file no. 14-0072), and approximately 0.33 nm corresponds to the (111) plane of the cubic phase of CdS (JCPDS file no. 80-0019). In order to further identify the elemental composition and where CdS and Ag2S particles were deposited, an area of TNTs deposited with CdS and Ag2S is chosen to analyze the corresponding EDX and EDX elemental mapping. As shown in Fig. 3e, O, S, Ti, Ag, and Cd can be identified. The quantitative analysis reveals that the atomic composition of O, S, Ti, Ag, and Cd is 51.87, 2.57, 41.64, 1.96, and 1.96 %, respectively. With a molar ratio of Ag to Cd at 1:1, we may calculate the molar ratio of Ag2S to CdS at 1:2. We calculated that S should be 2.94 %, which is close to 2.57 % and confirms the formation of Ag2S and CdS. Elemental mapping of Ag2S/CdS/TNTs-S, Fig. 3f–i, shows that Ag2S and CdS were deposited inside the TiO2 nanotubes uniformly.Fig. 3

Bottom Line: The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared.The cycles of local deposition have great influence on their photoelectric properties.The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, People's Republic of China.

ABSTRACT
Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor-Ag2S (0.9 eV) quantum dots (QDs)-in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

No MeSH data available.


Related in: MedlinePlus