Limits...
Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method.

Sun H, Zhao P, Zhang F, Liu Y, Hao J - Nanoscale Res Lett (2015)

Bottom Line: The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared.The cycles of local deposition have great influence on their photoelectric properties.The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, People's Republic of China.

ABSTRACT
Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor-Ag2S (0.9 eV) quantum dots (QDs)-in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

No MeSH data available.


Related in: MedlinePlus

a, b The SEM images of the top surface morphologies and a view of cracked TiO2 nanotubes anodized (10 °C) at 60 V for 30 min. c The SEM images of the top surface morphologies of CdS/TNTs fabricated using successive ionic layer adsorption and reaction (SILAR) method. d The TEM images of the top surface morphologies of the Ag2S/CdS/TNTs obtained via SSM
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4591224&req=5

Fig2: a, b The SEM images of the top surface morphologies and a view of cracked TiO2 nanotubes anodized (10 °C) at 60 V for 30 min. c The SEM images of the top surface morphologies of CdS/TNTs fabricated using successive ionic layer adsorption and reaction (SILAR) method. d The TEM images of the top surface morphologies of the Ag2S/CdS/TNTs obtained via SSM

Mentions: Figure 2a, b shows the SEM images of the top surface morphologies and a view of cracked TiO2 nanotubes anodized (10 °C) at 60 V for 30 min. It is very clear that the shape of the tubes is quite regular and uniform. The inner diameter of the tubes is about 75 nm, and the wall thickness of the TiO2 nanotubes on top is ~25 nm. As shown in Fig. 2b, TiO2 nanotubes pack closely with each other and the TNT length is about 5.5 μm. The SEM images of the top surface morphologies of CdS/TNTs fabricated using successive ionic layer adsorption and reaction (SILAR) method are shown in Fig. 2c. No particle aggregates can be observed at the inlet of the nanotubes, and the surface roughness of the array films rises dramatically. It may be considered that some CdS nanoparticles gather around the tubes. Figure 2d shows the TEM images of the top surface morphologies of the Ag2S/CdS/TNTs obtained via SSM. As shown in the images, a small part of the tubes is blocked by the Ag2S particles, which depends on the deposition cycles of Ag2S, and sunlight can still enter the unblocked tubes.Fig. 2


Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method.

Sun H, Zhao P, Zhang F, Liu Y, Hao J - Nanoscale Res Lett (2015)

a, b The SEM images of the top surface morphologies and a view of cracked TiO2 nanotubes anodized (10 °C) at 60 V for 30 min. c The SEM images of the top surface morphologies of CdS/TNTs fabricated using successive ionic layer adsorption and reaction (SILAR) method. d The TEM images of the top surface morphologies of the Ag2S/CdS/TNTs obtained via SSM
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4591224&req=5

Fig2: a, b The SEM images of the top surface morphologies and a view of cracked TiO2 nanotubes anodized (10 °C) at 60 V for 30 min. c The SEM images of the top surface morphologies of CdS/TNTs fabricated using successive ionic layer adsorption and reaction (SILAR) method. d The TEM images of the top surface morphologies of the Ag2S/CdS/TNTs obtained via SSM
Mentions: Figure 2a, b shows the SEM images of the top surface morphologies and a view of cracked TiO2 nanotubes anodized (10 °C) at 60 V for 30 min. It is very clear that the shape of the tubes is quite regular and uniform. The inner diameter of the tubes is about 75 nm, and the wall thickness of the TiO2 nanotubes on top is ~25 nm. As shown in Fig. 2b, TiO2 nanotubes pack closely with each other and the TNT length is about 5.5 μm. The SEM images of the top surface morphologies of CdS/TNTs fabricated using successive ionic layer adsorption and reaction (SILAR) method are shown in Fig. 2c. No particle aggregates can be observed at the inlet of the nanotubes, and the surface roughness of the array films rises dramatically. It may be considered that some CdS nanoparticles gather around the tubes. Figure 2d shows the TEM images of the top surface morphologies of the Ag2S/CdS/TNTs obtained via SSM. As shown in the images, a small part of the tubes is blocked by the Ag2S particles, which depends on the deposition cycles of Ag2S, and sunlight can still enter the unblocked tubes.Fig. 2

Bottom Line: The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared.The cycles of local deposition have great influence on their photoelectric properties.The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, People's Republic of China.

ABSTRACT
Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor-Ag2S (0.9 eV) quantum dots (QDs)-in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

No MeSH data available.


Related in: MedlinePlus