Limits...
Evaluation of High-Performance Curcumin Nanocrystals for Pulmonary Drug Delivery Both In Vitro and In Vivo.

Hu L, Kong D, Hu Q, Gao N, Pang S - Nanoscale Res Lett (2015)

Bottom Line: The effects of different milling times on particle size and aerodynamic performance were investigated.Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs.The aerodynamic results indicated that the DPIs displayed a good aerosol performance.

View Article: PubMed Central - PubMed

Affiliation: School of Pharmaceutical Sciences, Hebei University, No. 180, WuSi Road, Baoding, 071002, People's Republic of China. hbupharm@126.com.

ABSTRACT
This paper focused on formulating high-performance curcumin spray-dried powders for inhalation (curcumin-DPIs) to achieve a high lung concentration. Curcumin-DPIs were produced using wet milling combined with the spray drying method. The effects of different milling times on particle size and aerodynamic performance were investigated. The curcumin-DPIs were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution. Furthermore, the in vivo pharmacokinetic behavior and tissue distribution after pulmonary administration were also evaluated. Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs. The aerodynamic results indicated that the DPIs displayed a good aerosol performance. The plasma curcumin concentration was obviously enhanced by inhalation, and most of the curcumin-DPIs were deposited in the lung. This study demonstrated that inhalation was an effective way to carry drug to the lung, and curcumin-DPIs were hopeful for lung cancer treatment in the future.

No MeSH data available.


Related in: MedlinePlus

Concentrations of curcumin in tissues following pulmonary administration of curcumin-DPIs
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4591223&req=5

Fig9: Concentrations of curcumin in tissues following pulmonary administration of curcumin-DPIs

Mentions: Figure 9 showed the tissue curcumin concentrations of curcumin-DPIs. After pulmonary administration, the distribution of curcumin in the lung was dramatically increased at the predetermined time points compared with other tissues. Six hours after pulmonary administration, curcumin concentration in the lung was still high (824.27 μg/g), while a relatively low distribution in the liver (3.06 μg/g), kidney (6.10 μg/g), heart (4.23 μg/g), spleen (13.77 μg/g), and brain (0.53 μg/g) was found at the same time. The biodistribution study in rats indicated that curcumin-DPIs would mostly be deposited in the lung, which could enhance the lung curcumin concentration and decrease curcumin concentration in other tissues, thus reducing the systemic toxicity and improving the therapeutic effects.Fig. 9


Evaluation of High-Performance Curcumin Nanocrystals for Pulmonary Drug Delivery Both In Vitro and In Vivo.

Hu L, Kong D, Hu Q, Gao N, Pang S - Nanoscale Res Lett (2015)

Concentrations of curcumin in tissues following pulmonary administration of curcumin-DPIs
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4591223&req=5

Fig9: Concentrations of curcumin in tissues following pulmonary administration of curcumin-DPIs
Mentions: Figure 9 showed the tissue curcumin concentrations of curcumin-DPIs. After pulmonary administration, the distribution of curcumin in the lung was dramatically increased at the predetermined time points compared with other tissues. Six hours after pulmonary administration, curcumin concentration in the lung was still high (824.27 μg/g), while a relatively low distribution in the liver (3.06 μg/g), kidney (6.10 μg/g), heart (4.23 μg/g), spleen (13.77 μg/g), and brain (0.53 μg/g) was found at the same time. The biodistribution study in rats indicated that curcumin-DPIs would mostly be deposited in the lung, which could enhance the lung curcumin concentration and decrease curcumin concentration in other tissues, thus reducing the systemic toxicity and improving the therapeutic effects.Fig. 9

Bottom Line: The effects of different milling times on particle size and aerodynamic performance were investigated.Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs.The aerodynamic results indicated that the DPIs displayed a good aerosol performance.

View Article: PubMed Central - PubMed

Affiliation: School of Pharmaceutical Sciences, Hebei University, No. 180, WuSi Road, Baoding, 071002, People's Republic of China. hbupharm@126.com.

ABSTRACT
This paper focused on formulating high-performance curcumin spray-dried powders for inhalation (curcumin-DPIs) to achieve a high lung concentration. Curcumin-DPIs were produced using wet milling combined with the spray drying method. The effects of different milling times on particle size and aerodynamic performance were investigated. The curcumin-DPIs were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution. Furthermore, the in vivo pharmacokinetic behavior and tissue distribution after pulmonary administration were also evaluated. Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs. The aerodynamic results indicated that the DPIs displayed a good aerosol performance. The plasma curcumin concentration was obviously enhanced by inhalation, and most of the curcumin-DPIs were deposited in the lung. This study demonstrated that inhalation was an effective way to carry drug to the lung, and curcumin-DPIs were hopeful for lung cancer treatment in the future.

No MeSH data available.


Related in: MedlinePlus