Limits...
Evaluation of High-Performance Curcumin Nanocrystals for Pulmonary Drug Delivery Both In Vitro and In Vivo.

Hu L, Kong D, Hu Q, Gao N, Pang S - Nanoscale Res Lett (2015)

Bottom Line: The effects of different milling times on particle size and aerodynamic performance were investigated.Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs.The aerodynamic results indicated that the DPIs displayed a good aerosol performance.

View Article: PubMed Central - PubMed

Affiliation: School of Pharmaceutical Sciences, Hebei University, No. 180, WuSi Road, Baoding, 071002, People's Republic of China. hbupharm@126.com.

ABSTRACT
This paper focused on formulating high-performance curcumin spray-dried powders for inhalation (curcumin-DPIs) to achieve a high lung concentration. Curcumin-DPIs were produced using wet milling combined with the spray drying method. The effects of different milling times on particle size and aerodynamic performance were investigated. The curcumin-DPIs were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution. Furthermore, the in vivo pharmacokinetic behavior and tissue distribution after pulmonary administration were also evaluated. Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs. The aerodynamic results indicated that the DPIs displayed a good aerosol performance. The plasma curcumin concentration was obviously enhanced by inhalation, and most of the curcumin-DPIs were deposited in the lung. This study demonstrated that inhalation was an effective way to carry drug to the lung, and curcumin-DPIs were hopeful for lung cancer treatment in the future.

No MeSH data available.


Related in: MedlinePlus

a SEM images of bulk curcumin. b SEM images of curcumin-DPIs
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4591223&req=5

Fig7: a SEM images of bulk curcumin. b SEM images of curcumin-DPIs

Mentions: The SEM results (Fig. 7) presented that the bulk curcumin was in a tabular shape and had a broad particle size distribution. In contrast, the curcumin-DPIs showed spherical, uniform small particle sizes. It was found that some fine crystals adhered with each other during spraying by electrostatic and van der Waals forces, and the particle size became larger. During spray drying, the nanocrystals were sprayed in the form of a lot of small droplets and each droplet consisted of many fine particles. These particles aggregated together after water evaporated instantly, and the aggregates were hard to break into individual particles.Fig. 7


Evaluation of High-Performance Curcumin Nanocrystals for Pulmonary Drug Delivery Both In Vitro and In Vivo.

Hu L, Kong D, Hu Q, Gao N, Pang S - Nanoscale Res Lett (2015)

a SEM images of bulk curcumin. b SEM images of curcumin-DPIs
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4591223&req=5

Fig7: a SEM images of bulk curcumin. b SEM images of curcumin-DPIs
Mentions: The SEM results (Fig. 7) presented that the bulk curcumin was in a tabular shape and had a broad particle size distribution. In contrast, the curcumin-DPIs showed spherical, uniform small particle sizes. It was found that some fine crystals adhered with each other during spraying by electrostatic and van der Waals forces, and the particle size became larger. During spray drying, the nanocrystals were sprayed in the form of a lot of small droplets and each droplet consisted of many fine particles. These particles aggregated together after water evaporated instantly, and the aggregates were hard to break into individual particles.Fig. 7

Bottom Line: The effects of different milling times on particle size and aerodynamic performance were investigated.Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs.The aerodynamic results indicated that the DPIs displayed a good aerosol performance.

View Article: PubMed Central - PubMed

Affiliation: School of Pharmaceutical Sciences, Hebei University, No. 180, WuSi Road, Baoding, 071002, People's Republic of China. hbupharm@126.com.

ABSTRACT
This paper focused on formulating high-performance curcumin spray-dried powders for inhalation (curcumin-DPIs) to achieve a high lung concentration. Curcumin-DPIs were produced using wet milling combined with the spray drying method. The effects of different milling times on particle size and aerodynamic performance were investigated. The curcumin-DPIs were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution. Furthermore, the in vivo pharmacokinetic behavior and tissue distribution after pulmonary administration were also evaluated. Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs. The aerodynamic results indicated that the DPIs displayed a good aerosol performance. The plasma curcumin concentration was obviously enhanced by inhalation, and most of the curcumin-DPIs were deposited in the lung. This study demonstrated that inhalation was an effective way to carry drug to the lung, and curcumin-DPIs were hopeful for lung cancer treatment in the future.

No MeSH data available.


Related in: MedlinePlus