Limits...
Evaluation of High-Performance Curcumin Nanocrystals for Pulmonary Drug Delivery Both In Vitro and In Vivo.

Hu L, Kong D, Hu Q, Gao N, Pang S - Nanoscale Res Lett (2015)

Bottom Line: The effects of different milling times on particle size and aerodynamic performance were investigated.Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs.The aerodynamic results indicated that the DPIs displayed a good aerosol performance.

View Article: PubMed Central - PubMed

Affiliation: School of Pharmaceutical Sciences, Hebei University, No. 180, WuSi Road, Baoding, 071002, People's Republic of China. hbupharm@126.com.

ABSTRACT
This paper focused on formulating high-performance curcumin spray-dried powders for inhalation (curcumin-DPIs) to achieve a high lung concentration. Curcumin-DPIs were produced using wet milling combined with the spray drying method. The effects of different milling times on particle size and aerodynamic performance were investigated. The curcumin-DPIs were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution. Furthermore, the in vivo pharmacokinetic behavior and tissue distribution after pulmonary administration were also evaluated. Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs. The aerodynamic results indicated that the DPIs displayed a good aerosol performance. The plasma curcumin concentration was obviously enhanced by inhalation, and most of the curcumin-DPIs were deposited in the lung. This study demonstrated that inhalation was an effective way to carry drug to the lung, and curcumin-DPIs were hopeful for lung cancer treatment in the future.

No MeSH data available.


Related in: MedlinePlus

FTIR spectra of bulk curcumin and curcumin-DPIs milled with different times
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4591223&req=5

Fig5: FTIR spectra of bulk curcumin and curcumin-DPIs milled with different times

Mentions: The chemical compositions of bulk curcumin and curcumin-DPIs were evaluated by FTIR spectra, and it could be seen that there were no obvious differences between the two samples in the whole area of curcumin absorption bands. As shown in Fig. 5, the FTIR analysis showed absorption at 1720 cm−1 for C=O stretching of the ester group, at 1650 cm−1 for C=O of the ketone group, at 1300 cm−1 for the ether group, and at 2980 cm−1 for aromatic stretching. A sharp band at about 3500 cm−1 and the broad peak at 3200–3500 cm−1 in the spectrum have been attributed to the –OH group stretching vibration. It could be concluded that milling and spray drying did not change the chemical compositions of curcumin.Fig. 5


Evaluation of High-Performance Curcumin Nanocrystals for Pulmonary Drug Delivery Both In Vitro and In Vivo.

Hu L, Kong D, Hu Q, Gao N, Pang S - Nanoscale Res Lett (2015)

FTIR spectra of bulk curcumin and curcumin-DPIs milled with different times
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4591223&req=5

Fig5: FTIR spectra of bulk curcumin and curcumin-DPIs milled with different times
Mentions: The chemical compositions of bulk curcumin and curcumin-DPIs were evaluated by FTIR spectra, and it could be seen that there were no obvious differences between the two samples in the whole area of curcumin absorption bands. As shown in Fig. 5, the FTIR analysis showed absorption at 1720 cm−1 for C=O stretching of the ester group, at 1650 cm−1 for C=O of the ketone group, at 1300 cm−1 for the ether group, and at 2980 cm−1 for aromatic stretching. A sharp band at about 3500 cm−1 and the broad peak at 3200–3500 cm−1 in the spectrum have been attributed to the –OH group stretching vibration. It could be concluded that milling and spray drying did not change the chemical compositions of curcumin.Fig. 5

Bottom Line: The effects of different milling times on particle size and aerodynamic performance were investigated.Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs.The aerodynamic results indicated that the DPIs displayed a good aerosol performance.

View Article: PubMed Central - PubMed

Affiliation: School of Pharmaceutical Sciences, Hebei University, No. 180, WuSi Road, Baoding, 071002, People's Republic of China. hbupharm@126.com.

ABSTRACT
This paper focused on formulating high-performance curcumin spray-dried powders for inhalation (curcumin-DPIs) to achieve a high lung concentration. Curcumin-DPIs were produced using wet milling combined with the spray drying method. The effects of different milling times on particle size and aerodynamic performance were investigated. The curcumin-DPIs were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution. Furthermore, the in vivo pharmacokinetic behavior and tissue distribution after pulmonary administration were also evaluated. Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs. The aerodynamic results indicated that the DPIs displayed a good aerosol performance. The plasma curcumin concentration was obviously enhanced by inhalation, and most of the curcumin-DPIs were deposited in the lung. This study demonstrated that inhalation was an effective way to carry drug to the lung, and curcumin-DPIs were hopeful for lung cancer treatment in the future.

No MeSH data available.


Related in: MedlinePlus