Limits...
Evaluation of High-Performance Curcumin Nanocrystals for Pulmonary Drug Delivery Both In Vitro and In Vivo.

Hu L, Kong D, Hu Q, Gao N, Pang S - Nanoscale Res Lett (2015)

Bottom Line: The effects of different milling times on particle size and aerodynamic performance were investigated.Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs.The aerodynamic results indicated that the DPIs displayed a good aerosol performance.

View Article: PubMed Central - PubMed

Affiliation: School of Pharmaceutical Sciences, Hebei University, No. 180, WuSi Road, Baoding, 071002, People's Republic of China. hbupharm@126.com.

ABSTRACT
This paper focused on formulating high-performance curcumin spray-dried powders for inhalation (curcumin-DPIs) to achieve a high lung concentration. Curcumin-DPIs were produced using wet milling combined with the spray drying method. The effects of different milling times on particle size and aerodynamic performance were investigated. The curcumin-DPIs were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution. Furthermore, the in vivo pharmacokinetic behavior and tissue distribution after pulmonary administration were also evaluated. Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs. The aerodynamic results indicated that the DPIs displayed a good aerosol performance. The plasma curcumin concentration was obviously enhanced by inhalation, and most of the curcumin-DPIs were deposited in the lung. This study demonstrated that inhalation was an effective way to carry drug to the lung, and curcumin-DPIs were hopeful for lung cancer treatment in the future.

No MeSH data available.


Related in: MedlinePlus

Next generation impactor deposition profiles of curcumin-DPIs milled with different times
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4591223&req=5

Fig2: Next generation impactor deposition profiles of curcumin-DPIs milled with different times

Mentions: The deposition site in the respiratory tract and the inhaled efficiency were critically influenced by particle size distributions. Figure 2 showed the aerosol behavior of the spray-dried powders with different milling times. The FPFloaded and FPFemitted were 59.9 and 62.4 % for 10 min, 64.9 and 67.9 % for 20 min, 68.9 and 72.1 % for 30 min, and 68.8 and 72.3 % for 40 min, respectively (Table 1). The differences in the deposition patterns may be due to the decrease in the particle sizes. Furthermore, it was reported that inhaled particles below 5 μm could be able to penetrate into the lung [13]. So, most of the spray-dried powders could penetrate into the lung, thus increasing the curcumin’s lung deposition. In spite of the higher powder dispersion behavior, the dried powders still had a small amount of capsule and device retention. Powders may adhere in the capsule and the inhalation device during the emission process. Results showed that the powders milling for 30 and 40 min had higher FPFloaded and FPFemitted values and the former had a smaller capsule and device retention. So the milling time was set as 30 min for curcumin-DPI production, which could ensure a good aerosol performance.Fig. 2


Evaluation of High-Performance Curcumin Nanocrystals for Pulmonary Drug Delivery Both In Vitro and In Vivo.

Hu L, Kong D, Hu Q, Gao N, Pang S - Nanoscale Res Lett (2015)

Next generation impactor deposition profiles of curcumin-DPIs milled with different times
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4591223&req=5

Fig2: Next generation impactor deposition profiles of curcumin-DPIs milled with different times
Mentions: The deposition site in the respiratory tract and the inhaled efficiency were critically influenced by particle size distributions. Figure 2 showed the aerosol behavior of the spray-dried powders with different milling times. The FPFloaded and FPFemitted were 59.9 and 62.4 % for 10 min, 64.9 and 67.9 % for 20 min, 68.9 and 72.1 % for 30 min, and 68.8 and 72.3 % for 40 min, respectively (Table 1). The differences in the deposition patterns may be due to the decrease in the particle sizes. Furthermore, it was reported that inhaled particles below 5 μm could be able to penetrate into the lung [13]. So, most of the spray-dried powders could penetrate into the lung, thus increasing the curcumin’s lung deposition. In spite of the higher powder dispersion behavior, the dried powders still had a small amount of capsule and device retention. Powders may adhere in the capsule and the inhalation device during the emission process. Results showed that the powders milling for 30 and 40 min had higher FPFloaded and FPFemitted values and the former had a smaller capsule and device retention. So the milling time was set as 30 min for curcumin-DPI production, which could ensure a good aerosol performance.Fig. 2

Bottom Line: The effects of different milling times on particle size and aerodynamic performance were investigated.Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs.The aerodynamic results indicated that the DPIs displayed a good aerosol performance.

View Article: PubMed Central - PubMed

Affiliation: School of Pharmaceutical Sciences, Hebei University, No. 180, WuSi Road, Baoding, 071002, People's Republic of China. hbupharm@126.com.

ABSTRACT
This paper focused on formulating high-performance curcumin spray-dried powders for inhalation (curcumin-DPIs) to achieve a high lung concentration. Curcumin-DPIs were produced using wet milling combined with the spray drying method. The effects of different milling times on particle size and aerodynamic performance were investigated. The curcumin-DPIs were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution. Furthermore, the in vivo pharmacokinetic behavior and tissue distribution after pulmonary administration were also evaluated. Results showed that the drug dissolution was significantly enhanced by processing into curcumin-DPIs. The aerodynamic results indicated that the DPIs displayed a good aerosol performance. The plasma curcumin concentration was obviously enhanced by inhalation, and most of the curcumin-DPIs were deposited in the lung. This study demonstrated that inhalation was an effective way to carry drug to the lung, and curcumin-DPIs were hopeful for lung cancer treatment in the future.

No MeSH data available.


Related in: MedlinePlus