Limits...
Plantago ovata F. Mucilage-Alginate Mucoadhesive Beads for Controlled Release of Glibenclamide: Development, Optimization, and In Vitro-In Vivo Evaluation.

Nayak AK, Pal D, Santra K - J Pharm (Cairo) (2013)

Bottom Line: The effects of sodium alginate (SA) to IHM and cross-linker (CaCl2) concentration on the drug encapsulation efficiency (DEE, %), as well as cumulative drug release after 10 hours (R10 h, %), were optimized using 3(2) factorial design based on response surface methodology.The in vitro drug release from these beads was followed by controlled release (zero-order) pattern with super case-II transport mechanism.The optimized glibenclamide-loaded IHM-alginate mucoadhesive beads showed significant antidiabetic effect in alloxan-induced diabetic rats over prolonged period after oral administration.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Jharpokharia, Mayurbhanj, Odisha 757086, India.

ABSTRACT
The current study deals with the development and optimization of ispaghula (Plantago ovata F.) husk mucilage- (IHM-) alginate mucoadhesive beads containing glibenclamide by ionotropic gelation technique. The effects of sodium alginate (SA) to IHM and cross-linker (CaCl2) concentration on the drug encapsulation efficiency (DEE, %), as well as cumulative drug release after 10 hours (R10 h, %), were optimized using 3(2) factorial design based on response surface methodology. The observed responses were coincided well with the predicted values by the experimental design. The optimized mucoadhesive beads exhibited 94.43 ± 4.80% w/w of DEE and good mucoadhesivity with the biological membrane in wash-off test and sustained drug release profile over 10 hours. The beads were also characterized by SEM and FTIR analyses. The in vitro drug release from these beads was followed by controlled release (zero-order) pattern with super case-II transport mechanism. The optimized glibenclamide-loaded IHM-alginate mucoadhesive beads showed significant antidiabetic effect in alloxan-induced diabetic rats over prolonged period after oral administration.

No MeSH data available.


In vitro glibenclamide release from various IHM-alginate beads (mean ± S.D., n = 3).
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4590812&req=5

fig13: In vitro glibenclamide release from various IHM-alginate beads (mean ± S.D., n = 3).

Mentions: The in vitro glibenclamide release studies were carried out for glibenclamide-loaded IHM-alginate beads in the 0.1 N HCl (pH, 1.2) for first 2 hours and then in phosphate buffer (pH, 7.4) for next 8 hours. All these beads showed prolonged glibenclamide release over 10 hours (Figure 13). Glibenclamide release from these IHM-alginate beads in the acidic pH was found slow due to the shrinkage of alginate at acidic pH. The trace amount of drug release at the initial stage of the dissolution study could probably be due to the surface adhered drug. After that, glibenclamide release was observed faster in phosphate buffer (pH, 7.4) comparatively, due to the higher swelling rate of these beads in phosphate buffer. The cumulative drug released from these formulated beads containing glibenclamide in 10 hours (R10 h, %) was within the range of 65.78 ± 3.44% to 92.07 ± 4.05%, and this was found to be higher with the decreasing SA to IHM ratio in the polymer-blend and increasing CaCl2 concentration in cross-linking solution. In case of comparatively higher IHM containing beads, the more hydrophilic property of IHM could bond better with water to form viscous gel-structure. This might blockade the pores on the surface of beads and sustain drug release profile. Again, the glibenclamide release from IHM-alginate beads prepared using higher CaCl2 concentration was comparatively sustained than the beads formulated with that of lower concentration. The higher concentration of CaCl2 (cross-linker) could produce high degree of cross-linking and thereby slower the drug release from highly cross-linked glibenclamide-loaded IHM-alginate beads.


Plantago ovata F. Mucilage-Alginate Mucoadhesive Beads for Controlled Release of Glibenclamide: Development, Optimization, and In Vitro-In Vivo Evaluation.

Nayak AK, Pal D, Santra K - J Pharm (Cairo) (2013)

In vitro glibenclamide release from various IHM-alginate beads (mean ± S.D., n = 3).
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4590812&req=5

fig13: In vitro glibenclamide release from various IHM-alginate beads (mean ± S.D., n = 3).
Mentions: The in vitro glibenclamide release studies were carried out for glibenclamide-loaded IHM-alginate beads in the 0.1 N HCl (pH, 1.2) for first 2 hours and then in phosphate buffer (pH, 7.4) for next 8 hours. All these beads showed prolonged glibenclamide release over 10 hours (Figure 13). Glibenclamide release from these IHM-alginate beads in the acidic pH was found slow due to the shrinkage of alginate at acidic pH. The trace amount of drug release at the initial stage of the dissolution study could probably be due to the surface adhered drug. After that, glibenclamide release was observed faster in phosphate buffer (pH, 7.4) comparatively, due to the higher swelling rate of these beads in phosphate buffer. The cumulative drug released from these formulated beads containing glibenclamide in 10 hours (R10 h, %) was within the range of 65.78 ± 3.44% to 92.07 ± 4.05%, and this was found to be higher with the decreasing SA to IHM ratio in the polymer-blend and increasing CaCl2 concentration in cross-linking solution. In case of comparatively higher IHM containing beads, the more hydrophilic property of IHM could bond better with water to form viscous gel-structure. This might blockade the pores on the surface of beads and sustain drug release profile. Again, the glibenclamide release from IHM-alginate beads prepared using higher CaCl2 concentration was comparatively sustained than the beads formulated with that of lower concentration. The higher concentration of CaCl2 (cross-linker) could produce high degree of cross-linking and thereby slower the drug release from highly cross-linked glibenclamide-loaded IHM-alginate beads.

Bottom Line: The effects of sodium alginate (SA) to IHM and cross-linker (CaCl2) concentration on the drug encapsulation efficiency (DEE, %), as well as cumulative drug release after 10 hours (R10 h, %), were optimized using 3(2) factorial design based on response surface methodology.The in vitro drug release from these beads was followed by controlled release (zero-order) pattern with super case-II transport mechanism.The optimized glibenclamide-loaded IHM-alginate mucoadhesive beads showed significant antidiabetic effect in alloxan-induced diabetic rats over prolonged period after oral administration.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Jharpokharia, Mayurbhanj, Odisha 757086, India.

ABSTRACT
The current study deals with the development and optimization of ispaghula (Plantago ovata F.) husk mucilage- (IHM-) alginate mucoadhesive beads containing glibenclamide by ionotropic gelation technique. The effects of sodium alginate (SA) to IHM and cross-linker (CaCl2) concentration on the drug encapsulation efficiency (DEE, %), as well as cumulative drug release after 10 hours (R10 h, %), were optimized using 3(2) factorial design based on response surface methodology. The observed responses were coincided well with the predicted values by the experimental design. The optimized mucoadhesive beads exhibited 94.43 ± 4.80% w/w of DEE and good mucoadhesivity with the biological membrane in wash-off test and sustained drug release profile over 10 hours. The beads were also characterized by SEM and FTIR analyses. The in vitro drug release from these beads was followed by controlled release (zero-order) pattern with super case-II transport mechanism. The optimized glibenclamide-loaded IHM-alginate mucoadhesive beads showed significant antidiabetic effect in alloxan-induced diabetic rats over prolonged period after oral administration.

No MeSH data available.