Limits...
Plantago ovata F. Mucilage-Alginate Mucoadhesive Beads for Controlled Release of Glibenclamide: Development, Optimization, and In Vitro-In Vivo Evaluation.

Nayak AK, Pal D, Santra K - J Pharm (Cairo) (2013)

Bottom Line: The effects of sodium alginate (SA) to IHM and cross-linker (CaCl2) concentration on the drug encapsulation efficiency (DEE, %), as well as cumulative drug release after 10 hours (R10 h, %), were optimized using 3(2) factorial design based on response surface methodology.The in vitro drug release from these beads was followed by controlled release (zero-order) pattern with super case-II transport mechanism.The optimized glibenclamide-loaded IHM-alginate mucoadhesive beads showed significant antidiabetic effect in alloxan-induced diabetic rats over prolonged period after oral administration.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Jharpokharia, Mayurbhanj, Odisha 757086, India.

ABSTRACT
The current study deals with the development and optimization of ispaghula (Plantago ovata F.) husk mucilage- (IHM-) alginate mucoadhesive beads containing glibenclamide by ionotropic gelation technique. The effects of sodium alginate (SA) to IHM and cross-linker (CaCl2) concentration on the drug encapsulation efficiency (DEE, %), as well as cumulative drug release after 10 hours (R10 h, %), were optimized using 3(2) factorial design based on response surface methodology. The observed responses were coincided well with the predicted values by the experimental design. The optimized mucoadhesive beads exhibited 94.43 ± 4.80% w/w of DEE and good mucoadhesivity with the biological membrane in wash-off test and sustained drug release profile over 10 hours. The beads were also characterized by SEM and FTIR analyses. The in vitro drug release from these beads was followed by controlled release (zero-order) pattern with super case-II transport mechanism. The optimized glibenclamide-loaded IHM-alginate mucoadhesive beads showed significant antidiabetic effect in alloxan-induced diabetic rats over prolonged period after oral administration.

No MeSH data available.


The FTIR spectra of pure glibenclamide (a), optimized glibenclamide-loaded IHM-alginate beads (b), and glibenclamide-loaded IHM-alginate beads without drug (c).
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4590812&req=5

fig12: The FTIR spectra of pure glibenclamide (a), optimized glibenclamide-loaded IHM-alginate beads (b), and glibenclamide-loaded IHM-alginate beads without drug (c).

Mentions: The FTIR spectra of pure glibenclamide, glibenclamide-loaded IHM-alginate beads, and IHM-alginate beads without drug are shown in Figure 12. The FTIR spectrum of pure glibenclamide and the principal absorption peaks appeared at 3314 cm−1 due to the –NH stretching, 3116 cm−1 for aromatic hydrogen absorption, and a peak at 1717 cm−1 occurs due to –C=O absorption peak. In the FTIR spectrum of glibenclamide-loaded IHM-alginate beads, various characteristic peaks of glibenclamide appeared without any significant shifting. This indicates that glibenclamide maintained its identity after formulation of IHM-alginate beads through ionotropic-gelation technique. In both the FTIR spectra of glibenclamide-loaded IHM-alginate beads and IHM-alginate beads without drug, the strong and broad absorption band peaks had been observed between 3600–3200 cm−1 due to –OH stretching along with some complex bands in the region 1200–1030 cm−1 due to –C–O and C–O–C stretching vibrations, which are the characteristic of the natural polysaccharides. In addition, absorption bands in the regions 930–820 cm−1 and 785–730 cm−1 were also observed due to vibrational modes of pyranose rings of polysaccharides. The presence of strong asymmetric stretching absorption band between 1650 cm−1 and 1620 cm−1 and weaker symmetric stretching band near 1420 cm−1 supported the presence carboxylate anion of alginate structure. The FTIR analysis confirmed the compatibility of the glibenclamide with SA and IHM used to prepare the glibenclamide-loaded IHM-alginate beads by ionotropic-gelation technique.


Plantago ovata F. Mucilage-Alginate Mucoadhesive Beads for Controlled Release of Glibenclamide: Development, Optimization, and In Vitro-In Vivo Evaluation.

Nayak AK, Pal D, Santra K - J Pharm (Cairo) (2013)

The FTIR spectra of pure glibenclamide (a), optimized glibenclamide-loaded IHM-alginate beads (b), and glibenclamide-loaded IHM-alginate beads without drug (c).
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4590812&req=5

fig12: The FTIR spectra of pure glibenclamide (a), optimized glibenclamide-loaded IHM-alginate beads (b), and glibenclamide-loaded IHM-alginate beads without drug (c).
Mentions: The FTIR spectra of pure glibenclamide, glibenclamide-loaded IHM-alginate beads, and IHM-alginate beads without drug are shown in Figure 12. The FTIR spectrum of pure glibenclamide and the principal absorption peaks appeared at 3314 cm−1 due to the –NH stretching, 3116 cm−1 for aromatic hydrogen absorption, and a peak at 1717 cm−1 occurs due to –C=O absorption peak. In the FTIR spectrum of glibenclamide-loaded IHM-alginate beads, various characteristic peaks of glibenclamide appeared without any significant shifting. This indicates that glibenclamide maintained its identity after formulation of IHM-alginate beads through ionotropic-gelation technique. In both the FTIR spectra of glibenclamide-loaded IHM-alginate beads and IHM-alginate beads without drug, the strong and broad absorption band peaks had been observed between 3600–3200 cm−1 due to –OH stretching along with some complex bands in the region 1200–1030 cm−1 due to –C–O and C–O–C stretching vibrations, which are the characteristic of the natural polysaccharides. In addition, absorption bands in the regions 930–820 cm−1 and 785–730 cm−1 were also observed due to vibrational modes of pyranose rings of polysaccharides. The presence of strong asymmetric stretching absorption band between 1650 cm−1 and 1620 cm−1 and weaker symmetric stretching band near 1420 cm−1 supported the presence carboxylate anion of alginate structure. The FTIR analysis confirmed the compatibility of the glibenclamide with SA and IHM used to prepare the glibenclamide-loaded IHM-alginate beads by ionotropic-gelation technique.

Bottom Line: The effects of sodium alginate (SA) to IHM and cross-linker (CaCl2) concentration on the drug encapsulation efficiency (DEE, %), as well as cumulative drug release after 10 hours (R10 h, %), were optimized using 3(2) factorial design based on response surface methodology.The in vitro drug release from these beads was followed by controlled release (zero-order) pattern with super case-II transport mechanism.The optimized glibenclamide-loaded IHM-alginate mucoadhesive beads showed significant antidiabetic effect in alloxan-induced diabetic rats over prolonged period after oral administration.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Jharpokharia, Mayurbhanj, Odisha 757086, India.

ABSTRACT
The current study deals with the development and optimization of ispaghula (Plantago ovata F.) husk mucilage- (IHM-) alginate mucoadhesive beads containing glibenclamide by ionotropic gelation technique. The effects of sodium alginate (SA) to IHM and cross-linker (CaCl2) concentration on the drug encapsulation efficiency (DEE, %), as well as cumulative drug release after 10 hours (R10 h, %), were optimized using 3(2) factorial design based on response surface methodology. The observed responses were coincided well with the predicted values by the experimental design. The optimized mucoadhesive beads exhibited 94.43 ± 4.80% w/w of DEE and good mucoadhesivity with the biological membrane in wash-off test and sustained drug release profile over 10 hours. The beads were also characterized by SEM and FTIR analyses. The in vitro drug release from these beads was followed by controlled release (zero-order) pattern with super case-II transport mechanism. The optimized glibenclamide-loaded IHM-alginate mucoadhesive beads showed significant antidiabetic effect in alloxan-induced diabetic rats over prolonged period after oral administration.

No MeSH data available.