Limits...
The Association of Prenatal Exposure to Perfluorinated Chemicals with Maternal Essential and Long-Chain Polyunsaturated Fatty Acids during Pregnancy and the Birth Weight of Their Offspring: The Hokkaido Study.

Kishi R, Nakajima T, Goudarzi H, Kobayashi S, Sasaki S, Okada E, Miyashita C, Itoh S, Araki A, Ikeno T, Iwasaki Y, Nakazawa H - Environ. Health Perspect. (2015)

Bottom Line: Female infants weighed 186.6 g less with mothers whose PFOS levels were in the fourth quartile compared with the first quartile (95% CI: -363.4, -9.8).We observed no significant association between maternal levels of PFOS and birth weight of male infants.We also found a negative association between maternal PFOS levels and female birth weight.

View Article: PubMed Central - PubMed

Affiliation: Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan.

ABSTRACT

Background: Fatty acids (FAs) are essential for fetal growth. Exposure to perfluorinated chemicals (PFCs) may disrupt FA homeostasis, but there are no epidemiological data regarding associations of PFCs and FA concentrations.

Objectives: We estimated associations between perfluorooctane sulfonate (PFOS)/perfluorooctanoate (PFOA) concentrations and maternal levels of FAs and triglyceride (TG) and birth size of the offspring.

Methods: We analyzed 306 mother-child pairs in this birth cohort between 2002 and 2005 in Japan. The prenatal PFOS and PFOA levels were measured in maternal serum samples by liquid chromatography-tandem mass spectrometry. Maternal blood levels of nine FAs and TG were measured by gas chromatography-mass spectrometry and TG E-Test Wako kits, respectively. Information on infants' birth size was obtained from participant medical records.

Results: The median PFOS and PFOA levels were 5.6 and 1.4 ng/mL, respectively. In the fully adjusted model, including maternal age, parity, annual household income, blood sampling period, alcohol consumption, and smoking during pregnancy, PFOS but not PFOA had a negative association with the levels of palmitic, palmitoleic, oleic, linoleic, α-linolenic, and arachidonic acids (p < 0.005) and TG (p-value = 0.016). Female infants weighed 186.6 g less with mothers whose PFOS levels were in the fourth quartile compared with the first quartile (95% CI: -363.4, -9.8). We observed no significant association between maternal levels of PFOS and birth weight of male infants.

Conclusions: Our data suggest an inverse association between PFOS exposure and polyunsaturated FA levels in pregnant women. We also found a negative association between maternal PFOS levels and female birth weight.

No MeSH data available.


Related in: MedlinePlus

The dose–response relationship between the quartiles (Q) of PFOS and reduced levels of TG (A) and FAs (B–E) in maternal serum samples, Sapporo, Japan, 2002–2005 (n = 306). The LSMs were adjusted for maternal age, smoking and alcohol intake during pregnancy, annual household income, parity, and the blood sampling period (categorical). For EPA, DHA, and omega 3 FAs, the adjusted model also included fish intake. The LSMs were back transformed from log10 to normal values, and the error bars depict 95% CIs.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4590753&req=5

f1: The dose–response relationship between the quartiles (Q) of PFOS and reduced levels of TG (A) and FAs (B–E) in maternal serum samples, Sapporo, Japan, 2002–2005 (n = 306). The LSMs were adjusted for maternal age, smoking and alcohol intake during pregnancy, annual household income, parity, and the blood sampling period (categorical). For EPA, DHA, and omega 3 FAs, the adjusted model also included fish intake. The LSMs were back transformed from log10 to normal values, and the error bars depict 95% CIs.

Mentions: We also examined the association between the plasma PFOS quartiles, TG and FAs. The PFOS concentrations were divided into quartiles: 1.5–4.0, 4.0–5.6, 5.6–7.5, and 7.5–16.2 ng/mL. In Figure 1 (see also Supplemental Material, Table S1), the quartile analysis after full adjustment showed decreasing trends for lipids in the fourth quartile of PFOS compared with the first quartile, with significant linear trend: TG (–16.1 mg/dL, p for trend < 0.003), palmitic acid (–422.1 μg/mL, p for trend < 0.001), palmitoleic acid (–32.4 μg/mL, p for trend < 0.001), oleic acid (–217.5 μg/mL, p for trend = 0.002), LA (–373.6 μg/mL, p for trend < 0.001), ALA (–5.2 μg/mL, p for trend < 0.001), AA (–24.9 μg/mL, p for trend < 0.001) and DHA (–6.4 μg/mL, p for trend < 0.03). In addition, increasing PFOS quartiles were negatively associated with EFA (–379.5 μg/mL, p for trend < 0.001) and omega 6 FAs (–399.7 μg/mL, p for trend < 0.001). However, a nonsignificant negative association was observed between the PFOS levels and omega 3 FAs (–7.3 μg/mL, p for trend = 0.068).


The Association of Prenatal Exposure to Perfluorinated Chemicals with Maternal Essential and Long-Chain Polyunsaturated Fatty Acids during Pregnancy and the Birth Weight of Their Offspring: The Hokkaido Study.

Kishi R, Nakajima T, Goudarzi H, Kobayashi S, Sasaki S, Okada E, Miyashita C, Itoh S, Araki A, Ikeno T, Iwasaki Y, Nakazawa H - Environ. Health Perspect. (2015)

The dose–response relationship between the quartiles (Q) of PFOS and reduced levels of TG (A) and FAs (B–E) in maternal serum samples, Sapporo, Japan, 2002–2005 (n = 306). The LSMs were adjusted for maternal age, smoking and alcohol intake during pregnancy, annual household income, parity, and the blood sampling period (categorical). For EPA, DHA, and omega 3 FAs, the adjusted model also included fish intake. The LSMs were back transformed from log10 to normal values, and the error bars depict 95% CIs.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4590753&req=5

f1: The dose–response relationship between the quartiles (Q) of PFOS and reduced levels of TG (A) and FAs (B–E) in maternal serum samples, Sapporo, Japan, 2002–2005 (n = 306). The LSMs were adjusted for maternal age, smoking and alcohol intake during pregnancy, annual household income, parity, and the blood sampling period (categorical). For EPA, DHA, and omega 3 FAs, the adjusted model also included fish intake. The LSMs were back transformed from log10 to normal values, and the error bars depict 95% CIs.
Mentions: We also examined the association between the plasma PFOS quartiles, TG and FAs. The PFOS concentrations were divided into quartiles: 1.5–4.0, 4.0–5.6, 5.6–7.5, and 7.5–16.2 ng/mL. In Figure 1 (see also Supplemental Material, Table S1), the quartile analysis after full adjustment showed decreasing trends for lipids in the fourth quartile of PFOS compared with the first quartile, with significant linear trend: TG (–16.1 mg/dL, p for trend < 0.003), palmitic acid (–422.1 μg/mL, p for trend < 0.001), palmitoleic acid (–32.4 μg/mL, p for trend < 0.001), oleic acid (–217.5 μg/mL, p for trend = 0.002), LA (–373.6 μg/mL, p for trend < 0.001), ALA (–5.2 μg/mL, p for trend < 0.001), AA (–24.9 μg/mL, p for trend < 0.001) and DHA (–6.4 μg/mL, p for trend < 0.03). In addition, increasing PFOS quartiles were negatively associated with EFA (–379.5 μg/mL, p for trend < 0.001) and omega 6 FAs (–399.7 μg/mL, p for trend < 0.001). However, a nonsignificant negative association was observed between the PFOS levels and omega 3 FAs (–7.3 μg/mL, p for trend = 0.068).

Bottom Line: Female infants weighed 186.6 g less with mothers whose PFOS levels were in the fourth quartile compared with the first quartile (95% CI: -363.4, -9.8).We observed no significant association between maternal levels of PFOS and birth weight of male infants.We also found a negative association between maternal PFOS levels and female birth weight.

View Article: PubMed Central - PubMed

Affiliation: Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan.

ABSTRACT

Background: Fatty acids (FAs) are essential for fetal growth. Exposure to perfluorinated chemicals (PFCs) may disrupt FA homeostasis, but there are no epidemiological data regarding associations of PFCs and FA concentrations.

Objectives: We estimated associations between perfluorooctane sulfonate (PFOS)/perfluorooctanoate (PFOA) concentrations and maternal levels of FAs and triglyceride (TG) and birth size of the offspring.

Methods: We analyzed 306 mother-child pairs in this birth cohort between 2002 and 2005 in Japan. The prenatal PFOS and PFOA levels were measured in maternal serum samples by liquid chromatography-tandem mass spectrometry. Maternal blood levels of nine FAs and TG were measured by gas chromatography-mass spectrometry and TG E-Test Wako kits, respectively. Information on infants' birth size was obtained from participant medical records.

Results: The median PFOS and PFOA levels were 5.6 and 1.4 ng/mL, respectively. In the fully adjusted model, including maternal age, parity, annual household income, blood sampling period, alcohol consumption, and smoking during pregnancy, PFOS but not PFOA had a negative association with the levels of palmitic, palmitoleic, oleic, linoleic, α-linolenic, and arachidonic acids (p < 0.005) and TG (p-value = 0.016). Female infants weighed 186.6 g less with mothers whose PFOS levels were in the fourth quartile compared with the first quartile (95% CI: -363.4, -9.8). We observed no significant association between maternal levels of PFOS and birth weight of male infants.

Conclusions: Our data suggest an inverse association between PFOS exposure and polyunsaturated FA levels in pregnant women. We also found a negative association between maternal PFOS levels and female birth weight.

No MeSH data available.


Related in: MedlinePlus