Limits...
Effect of Organic Diet Intervention on Pesticide Exposures in Young Children Living in Low-Income Urban and Agricultural Communities.

Bradman A, Quirós-Alcalá L, Castorina R, Schall RA, Camacho J, Holland NT, Barr DB, Eskenazi B - Environ. Health Perspect. (2015)

Bottom Line: We aimed to determine whether consuming an organic diet reduced urinary pesticide metabolite concentrations in 40 Mexican-American children, 3-6 years of age, living in California urban and agricultural communities.For six metabolites with detection frequencies > 50%, adjusted geometric mean concentrations during the organic phase were generally lower for all children, and were significant for total dialkylphosphates (DAPs) and dimethyl DAPs (DMs; metabolites of OP insecticides) and 2,4-D (2,4-dichlorophenoxyacetic acid, a herbicide), with reductions of 40%, 49%, and 25%, respectively (p < 0.01).Concentrations for most of the frequently detected metabolites were generally higher in Salinas compared with Oakland children, with DMs and metolachlor at or near significance (p = 0.06 and 0.03, respectively).

View Article: PubMed Central - PubMed

Affiliation: Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA.

ABSTRACT

Background: Recent organic diet intervention studies suggest that diet is a significant source of pesticide exposure in young children. These studies have focused on children living in suburban communities.

Objectives: We aimed to determine whether consuming an organic diet reduced urinary pesticide metabolite concentrations in 40 Mexican-American children, 3-6 years of age, living in California urban and agricultural communities.

Methods: In 2006, we collected urine samples over 16 consecutive days from children who consumed conventionally grown food for 4 days, organic food for 7 days, and then conventionally grown food for 5 days. We measured 23 metabolites, reflecting potential exposure to organophosphorous (OP), pyrethroid, and other pesticides used in homes and agriculture. We used linear mixed-effects models to evaluate the effects of diet on urinary metabolite concentrations.

Results: For six metabolites with detection frequencies > 50%, adjusted geometric mean concentrations during the organic phase were generally lower for all children, and were significant for total dialkylphosphates (DAPs) and dimethyl DAPs (DMs; metabolites of OP insecticides) and 2,4-D (2,4-dichlorophenoxyacetic acid, a herbicide), with reductions of 40%, 49%, and 25%, respectively (p < 0.01). Chemical-specific metabolite concentrations for several OP pesticides, pyrethroids, and herbicides were either infrequently detected and/or not significantly affected by diet. Concentrations for most of the frequently detected metabolites were generally higher in Salinas compared with Oakland children, with DMs and metolachlor at or near significance (p = 0.06 and 0.03, respectively).

Conclusion: An organic diet was significantly associated with reduced urinary concentrations of nonspecific dimethyl OP insecticide metabolites and the herbicide 2,4-D in children. Additional research is needed to clarify the relative importance of dietary and non-dietary sources of pesticide exposures to young children.

No MeSH data available.


Related in: MedlinePlus

Study activities by day.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4590750&req=5

f1: Study activities by day.

Mentions: Data collection. Families participated in the study for 16 consecutive days. On the first day, bilingual staff obtained consent; administered a baseline questionnaire to collect information on household characteristics and pesticide exposure behaviors (e.g., recent pesticide use at home or workplace); conducted a home inspection to record information on pest infestations, pesticide active ingredients, and proximity to agricultural fields; provided materials for urine specimen collection; and trained parents on how to collect urine specimens and complete child food intake diaries. Parents also submitted a grocery list for food items to be consumed during the organic diet phase, and the food was delivered to the family on the fourth day. Parents recorded all of the food items and portion size consumed by the child each day based on validated guidelines (Block et al. 1990, 1992). Staff conducted daily in-person interviews with the mother when they picked up the urine specimen and the food intake diaries. The interview collected information on home and workplace pesticide use and on the child’s compliance with the diet protocols (i.e., parents were asked if the child ate food outside of the home or any conventional foods during the organic diet phase and whether they consumed any leftover organic food during the second conventional diet phase) (Figure 1 shows timing of study activities). Parents were provided with gift certificates to local grocery stores for their participation in the study and children were provided with educational materials/toys at five different time points throughout the study to encourage adherence to the diet protocol and provision of urine samples.


Effect of Organic Diet Intervention on Pesticide Exposures in Young Children Living in Low-Income Urban and Agricultural Communities.

Bradman A, Quirós-Alcalá L, Castorina R, Schall RA, Camacho J, Holland NT, Barr DB, Eskenazi B - Environ. Health Perspect. (2015)

Study activities by day.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4590750&req=5

f1: Study activities by day.
Mentions: Data collection. Families participated in the study for 16 consecutive days. On the first day, bilingual staff obtained consent; administered a baseline questionnaire to collect information on household characteristics and pesticide exposure behaviors (e.g., recent pesticide use at home or workplace); conducted a home inspection to record information on pest infestations, pesticide active ingredients, and proximity to agricultural fields; provided materials for urine specimen collection; and trained parents on how to collect urine specimens and complete child food intake diaries. Parents also submitted a grocery list for food items to be consumed during the organic diet phase, and the food was delivered to the family on the fourth day. Parents recorded all of the food items and portion size consumed by the child each day based on validated guidelines (Block et al. 1990, 1992). Staff conducted daily in-person interviews with the mother when they picked up the urine specimen and the food intake diaries. The interview collected information on home and workplace pesticide use and on the child’s compliance with the diet protocols (i.e., parents were asked if the child ate food outside of the home or any conventional foods during the organic diet phase and whether they consumed any leftover organic food during the second conventional diet phase) (Figure 1 shows timing of study activities). Parents were provided with gift certificates to local grocery stores for their participation in the study and children were provided with educational materials/toys at five different time points throughout the study to encourage adherence to the diet protocol and provision of urine samples.

Bottom Line: We aimed to determine whether consuming an organic diet reduced urinary pesticide metabolite concentrations in 40 Mexican-American children, 3-6 years of age, living in California urban and agricultural communities.For six metabolites with detection frequencies > 50%, adjusted geometric mean concentrations during the organic phase were generally lower for all children, and were significant for total dialkylphosphates (DAPs) and dimethyl DAPs (DMs; metabolites of OP insecticides) and 2,4-D (2,4-dichlorophenoxyacetic acid, a herbicide), with reductions of 40%, 49%, and 25%, respectively (p < 0.01).Concentrations for most of the frequently detected metabolites were generally higher in Salinas compared with Oakland children, with DMs and metolachlor at or near significance (p = 0.06 and 0.03, respectively).

View Article: PubMed Central - PubMed

Affiliation: Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA.

ABSTRACT

Background: Recent organic diet intervention studies suggest that diet is a significant source of pesticide exposure in young children. These studies have focused on children living in suburban communities.

Objectives: We aimed to determine whether consuming an organic diet reduced urinary pesticide metabolite concentrations in 40 Mexican-American children, 3-6 years of age, living in California urban and agricultural communities.

Methods: In 2006, we collected urine samples over 16 consecutive days from children who consumed conventionally grown food for 4 days, organic food for 7 days, and then conventionally grown food for 5 days. We measured 23 metabolites, reflecting potential exposure to organophosphorous (OP), pyrethroid, and other pesticides used in homes and agriculture. We used linear mixed-effects models to evaluate the effects of diet on urinary metabolite concentrations.

Results: For six metabolites with detection frequencies > 50%, adjusted geometric mean concentrations during the organic phase were generally lower for all children, and were significant for total dialkylphosphates (DAPs) and dimethyl DAPs (DMs; metabolites of OP insecticides) and 2,4-D (2,4-dichlorophenoxyacetic acid, a herbicide), with reductions of 40%, 49%, and 25%, respectively (p < 0.01). Chemical-specific metabolite concentrations for several OP pesticides, pyrethroids, and herbicides were either infrequently detected and/or not significantly affected by diet. Concentrations for most of the frequently detected metabolites were generally higher in Salinas compared with Oakland children, with DMs and metolachlor at or near significance (p = 0.06 and 0.03, respectively).

Conclusion: An organic diet was significantly associated with reduced urinary concentrations of nonspecific dimethyl OP insecticide metabolites and the herbicide 2,4-D in children. Additional research is needed to clarify the relative importance of dietary and non-dietary sources of pesticide exposures to young children.

No MeSH data available.


Related in: MedlinePlus