Limits...
Clinico-laboratory spectrum of dengue viral infection and risk factors associated with dengue hemorrhagic fever: a retrospective study.

Mallhi TH, Khan AH, Adnan AS, Sarriff A, Khan YH, Jummaat F - BMC Infect. Dis. (2015)

Bottom Line: Skin rash, dehydration, shortness of breath, pleural effusion and thick gall bladder were more significantly (P < 0.05) associated with DHF than DF.Current study demonstrated that DF and DHF present significantly different clinico-laboratory profile.Older age, secondary infection, diabetes mellitus, lethargy, thick gallbladder and delayed hospitalization significantly predict DHF.

View Article: PubMed Central - PubMed

Affiliation: Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, University Sains Malaysia, Penang, 11800, Malaysia. tauqeer.hussain.mallhi@hotmail.com.

ABSTRACT

Background: The incidence of dengue is rising steadily in Malaysia since the first major outbreak in 1973. Despite aggressive measures taken by the relevant authorities, Malaysia is still facing worsening dengue crisis over the past few years. There is an urgent need to evaluate dengue cases for better understanding of clinic-laboratory spectrum in order to combat this disease.

Methods: A retrospective analysis of dengue patients admitted to a tertiary care teaching hospital during the period of six years (2008 - 2013) was performed. Patient's demographics, clinical and laboratory findings were recorded via structured data collection form. Patients were categorized into dengue fever (DF) and dengue hemorrhagic fever (DHF). Appropriate statistical methods were used to compare these two groups in order to determine difference in clinico-laboratory characteristics and to identify independent risk factors of DHF.

Results: A total 667 dengue patients (30.69 ± 16.13 years; Male: 56.7 %) were reviewed. Typical manifestations of dengue like fever, myalgia, arthralgia, headache, vomiting, abdominal pain and skin rash were observed in more than 40 % patients. DHF was observed in 79 (11.8 %) cases. Skin rash, dehydration, shortness of breath, pleural effusion and thick gall bladder were more significantly (P < 0.05) associated with DHF than DF. Multivariate regression analysis demonstrated presence of age > 40 years (OR: 4.1, P < 0.001), secondary infection (OR: 2.7, P = 0.042), diabetes mellitus (OR: 2.8, P = 0.041), lethargy (OR: 3.1, P = 0.005), thick gallbladder (OR: 1.7, P = 0.029) and delayed hospitalization (OR: 2.3, P = 0.037) as independent predictors of DHF. Overall mortality was 1.2 % in our study.

Conclusions: Current study demonstrated that DF and DHF present significantly different clinico-laboratory profile. Older age, secondary infection, diabetes mellitus, lethargy, thick gallbladder and delayed hospitalization significantly predict DHF. Prior knowledge of expected clinical profile and predictors of DHF/DSS development would provide information to identify individuals at higher risk and on the other hand, give sufficient time to clinicians for reducing dengue related morbidity and mortality.

No MeSH data available.


Related in: MedlinePlus

Study flow diagram
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4590689&req=5

Fig2: Study flow diagram

Mentions: Suspected dengue infection was defined as the presence of fever and any two of the following symptoms: myalgia, headache, arthralgia, skin rash, retro-orbital pain, hemorrhagic manifestation (s), or leucopenia (white blood cell [WBC] count of <4 × 109 L − 1) [20]. Suspected cases were confirmed by using at least one of the following criteria: (1) positive reverse transcriptase polymerase chain reaction (RT-PCR) result, (2) presence of dengue immunoglobulin M and G antibodies in acute phase serum by enzyme linked immunosorbent assay [Pan Bio Dengue IgM ELISA, Dengue IgM Dot Enzyme Immunoassay, SD Dengue IgM and IgG capture ELISA Kits; Standard Diagnostics, Korea], and (3) at least 4-fold increase of dengue-specific hemagglutination inhibition titers in convalescent serum when compared with acute phase serum. The serum samples were also tested for dengue-specific NS1 [pan-E Early dengue ELISA kit by Panbio, Australia and Platelia dengue NS1Ag assay by Bio-Rad Laboratories, USA) [21]. Only confirmed dengue cases were included in analysis. Primary dengue infection was distinguished from secondary infection by using IgM-IgG ratio where dengue infection was defined as primary if ratio ≥ 1.8 and as secondary if < 1.8 [22] or if there was a 4-fold increase of HAI and the titers were ≤1:1280 and ≥1:2560, respectively [23]. Serologically confirmed dengue patients were subjected to clinical case definition and disease severity was classified into DF, DHF and DSS, according to the WHO criteria [20]. Patient’s demographics and clinical presentations were recorded on day of admission while laboratory findings were recorded for each day of hospitalization until discharge. Study methodology with patient’s inclusion and exclusion criteria are shown in Fig. 2.Fig. 2


Clinico-laboratory spectrum of dengue viral infection and risk factors associated with dengue hemorrhagic fever: a retrospective study.

Mallhi TH, Khan AH, Adnan AS, Sarriff A, Khan YH, Jummaat F - BMC Infect. Dis. (2015)

Study flow diagram
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4590689&req=5

Fig2: Study flow diagram
Mentions: Suspected dengue infection was defined as the presence of fever and any two of the following symptoms: myalgia, headache, arthralgia, skin rash, retro-orbital pain, hemorrhagic manifestation (s), or leucopenia (white blood cell [WBC] count of <4 × 109 L − 1) [20]. Suspected cases were confirmed by using at least one of the following criteria: (1) positive reverse transcriptase polymerase chain reaction (RT-PCR) result, (2) presence of dengue immunoglobulin M and G antibodies in acute phase serum by enzyme linked immunosorbent assay [Pan Bio Dengue IgM ELISA, Dengue IgM Dot Enzyme Immunoassay, SD Dengue IgM and IgG capture ELISA Kits; Standard Diagnostics, Korea], and (3) at least 4-fold increase of dengue-specific hemagglutination inhibition titers in convalescent serum when compared with acute phase serum. The serum samples were also tested for dengue-specific NS1 [pan-E Early dengue ELISA kit by Panbio, Australia and Platelia dengue NS1Ag assay by Bio-Rad Laboratories, USA) [21]. Only confirmed dengue cases were included in analysis. Primary dengue infection was distinguished from secondary infection by using IgM-IgG ratio where dengue infection was defined as primary if ratio ≥ 1.8 and as secondary if < 1.8 [22] or if there was a 4-fold increase of HAI and the titers were ≤1:1280 and ≥1:2560, respectively [23]. Serologically confirmed dengue patients were subjected to clinical case definition and disease severity was classified into DF, DHF and DSS, according to the WHO criteria [20]. Patient’s demographics and clinical presentations were recorded on day of admission while laboratory findings were recorded for each day of hospitalization until discharge. Study methodology with patient’s inclusion and exclusion criteria are shown in Fig. 2.Fig. 2

Bottom Line: Skin rash, dehydration, shortness of breath, pleural effusion and thick gall bladder were more significantly (P < 0.05) associated with DHF than DF.Current study demonstrated that DF and DHF present significantly different clinico-laboratory profile.Older age, secondary infection, diabetes mellitus, lethargy, thick gallbladder and delayed hospitalization significantly predict DHF.

View Article: PubMed Central - PubMed

Affiliation: Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, University Sains Malaysia, Penang, 11800, Malaysia. tauqeer.hussain.mallhi@hotmail.com.

ABSTRACT

Background: The incidence of dengue is rising steadily in Malaysia since the first major outbreak in 1973. Despite aggressive measures taken by the relevant authorities, Malaysia is still facing worsening dengue crisis over the past few years. There is an urgent need to evaluate dengue cases for better understanding of clinic-laboratory spectrum in order to combat this disease.

Methods: A retrospective analysis of dengue patients admitted to a tertiary care teaching hospital during the period of six years (2008 - 2013) was performed. Patient's demographics, clinical and laboratory findings were recorded via structured data collection form. Patients were categorized into dengue fever (DF) and dengue hemorrhagic fever (DHF). Appropriate statistical methods were used to compare these two groups in order to determine difference in clinico-laboratory characteristics and to identify independent risk factors of DHF.

Results: A total 667 dengue patients (30.69 ± 16.13 years; Male: 56.7 %) were reviewed. Typical manifestations of dengue like fever, myalgia, arthralgia, headache, vomiting, abdominal pain and skin rash were observed in more than 40 % patients. DHF was observed in 79 (11.8 %) cases. Skin rash, dehydration, shortness of breath, pleural effusion and thick gall bladder were more significantly (P < 0.05) associated with DHF than DF. Multivariate regression analysis demonstrated presence of age > 40 years (OR: 4.1, P < 0.001), secondary infection (OR: 2.7, P = 0.042), diabetes mellitus (OR: 2.8, P = 0.041), lethargy (OR: 3.1, P = 0.005), thick gallbladder (OR: 1.7, P = 0.029) and delayed hospitalization (OR: 2.3, P = 0.037) as independent predictors of DHF. Overall mortality was 1.2 % in our study.

Conclusions: Current study demonstrated that DF and DHF present significantly different clinico-laboratory profile. Older age, secondary infection, diabetes mellitus, lethargy, thick gallbladder and delayed hospitalization significantly predict DHF. Prior knowledge of expected clinical profile and predictors of DHF/DSS development would provide information to identify individuals at higher risk and on the other hand, give sufficient time to clinicians for reducing dengue related morbidity and mortality.

No MeSH data available.


Related in: MedlinePlus