Limits...
Foraging behavior links climate variability and reproduction in North Pacific albatrosses.

Thorne LH, Hazen EL, Bograd SJ, Foley DG, Conners MG, Kappes MA, Kim HM, Costa DP, Tremblay Y, Shaffer SA - Mov Ecol (2015)

Bottom Line: Climate-driven environmental change in the North Pacific has been well documented, with marked effects on the habitat and foraging behavior of marine predators.Higher trip distance and/or duration during brooding were associated with decreased reproductive success.Our results link climate variability with both albatross behavior and reproductive success, information that is critical for predicting how albatross populations will respond to future climate change.

View Article: PubMed Central - PubMed

Affiliation: School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790 USA.

ABSTRACT

Background: Climate-driven environmental change in the North Pacific has been well documented, with marked effects on the habitat and foraging behavior of marine predators. However, the mechanistic linkages connecting climate-driven changes in behavior to predator populations are not well understood. We evaluated the effects of climate-driven environmental variability on the reproductive success and foraging behavior of Laysan and Black-footed albatrosses breeding in the Northwest Hawaiian Islands during both brooding and incubating periods. We assessed foraging trip metrics and reproductive success using data collected from 2002-2012 and 1981-2012, respectively, relative to variability in the location of the Transition Zone Chlorophyll Front (TZCF, an important foraging region for albatrosses), sea surface temperature (SST), Multivariate ENSO Index (MEI), and the North Pacific Gyre Oscillation index (NPGO).

Results: Foraging behavior for both species was influenced by climatic and oceanographic factors. While brooding chicks, both species traveled farther during La Niña conditions, when NPGO was high and when the TZCF was farther north (farther from the breeding site). Models showed that reproductive success for both species showed similar trends, correlating negatively with conditions observed during La Niña events (low MEI, high SST, high NPGO, increased distance to TZCF), but models for Laysan albatrosses explained a higher proportion of the variation. Spatial correlations of Laysan albatross reproductive success and SST anomalies highlighted strong negative correlations (>95 %) between habitat use and SST. Higher trip distance and/or duration during brooding were associated with decreased reproductive success.

Conclusions: Our findings suggest that during adverse conditions (La Niña conditions, high NPGO, northward displacement of the TZCF), both Laysan and Black-footed albatrosses took longer foraging trips and/or traveled farther during brooding, likely resulting in a lower reproductive success due to increased energetic costs. Our results link climate variability with both albatross behavior and reproductive success, information that is critical for predicting how albatross populations will respond to future climate change.

No MeSH data available.


Related in: MedlinePlus

Spatial correlations between (a) Laysan and (b) Black-footed albatross reproductive success and SSTa. Correlation coefficients were calculated on an annual scale using November–February SSTa and albatross reproductive success. The solid black lines denote the threshold value for the 95 % confidence level. Brooding habitat is shown as a reference for both species
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4590278&req=5

Fig7: Spatial correlations between (a) Laysan and (b) Black-footed albatross reproductive success and SSTa. Correlation coefficients were calculated on an annual scale using November–February SSTa and albatross reproductive success. The solid black lines denote the threshold value for the 95 % confidence level. Brooding habitat is shown as a reference for both species

Mentions: Figure 7 shows the spatial distribution of correlation coefficients between the time series of albatross reproductive success and each grid point of November–February average SSTa. Within Laysan albatross brooding habitat, there were strong negative correlations (>95 % confidence level) between Laysan albatross reproductive success and SSTa. Correlations with Black-footed albatross reproductive success within brooding habitat for this species were weaker (<95 % confidence level).Fig. 7


Foraging behavior links climate variability and reproduction in North Pacific albatrosses.

Thorne LH, Hazen EL, Bograd SJ, Foley DG, Conners MG, Kappes MA, Kim HM, Costa DP, Tremblay Y, Shaffer SA - Mov Ecol (2015)

Spatial correlations between (a) Laysan and (b) Black-footed albatross reproductive success and SSTa. Correlation coefficients were calculated on an annual scale using November–February SSTa and albatross reproductive success. The solid black lines denote the threshold value for the 95 % confidence level. Brooding habitat is shown as a reference for both species
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4590278&req=5

Fig7: Spatial correlations between (a) Laysan and (b) Black-footed albatross reproductive success and SSTa. Correlation coefficients were calculated on an annual scale using November–February SSTa and albatross reproductive success. The solid black lines denote the threshold value for the 95 % confidence level. Brooding habitat is shown as a reference for both species
Mentions: Figure 7 shows the spatial distribution of correlation coefficients between the time series of albatross reproductive success and each grid point of November–February average SSTa. Within Laysan albatross brooding habitat, there were strong negative correlations (>95 % confidence level) between Laysan albatross reproductive success and SSTa. Correlations with Black-footed albatross reproductive success within brooding habitat for this species were weaker (<95 % confidence level).Fig. 7

Bottom Line: Climate-driven environmental change in the North Pacific has been well documented, with marked effects on the habitat and foraging behavior of marine predators.Higher trip distance and/or duration during brooding were associated with decreased reproductive success.Our results link climate variability with both albatross behavior and reproductive success, information that is critical for predicting how albatross populations will respond to future climate change.

View Article: PubMed Central - PubMed

Affiliation: School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790 USA.

ABSTRACT

Background: Climate-driven environmental change in the North Pacific has been well documented, with marked effects on the habitat and foraging behavior of marine predators. However, the mechanistic linkages connecting climate-driven changes in behavior to predator populations are not well understood. We evaluated the effects of climate-driven environmental variability on the reproductive success and foraging behavior of Laysan and Black-footed albatrosses breeding in the Northwest Hawaiian Islands during both brooding and incubating periods. We assessed foraging trip metrics and reproductive success using data collected from 2002-2012 and 1981-2012, respectively, relative to variability in the location of the Transition Zone Chlorophyll Front (TZCF, an important foraging region for albatrosses), sea surface temperature (SST), Multivariate ENSO Index (MEI), and the North Pacific Gyre Oscillation index (NPGO).

Results: Foraging behavior for both species was influenced by climatic and oceanographic factors. While brooding chicks, both species traveled farther during La Niña conditions, when NPGO was high and when the TZCF was farther north (farther from the breeding site). Models showed that reproductive success for both species showed similar trends, correlating negatively with conditions observed during La Niña events (low MEI, high SST, high NPGO, increased distance to TZCF), but models for Laysan albatrosses explained a higher proportion of the variation. Spatial correlations of Laysan albatross reproductive success and SST anomalies highlighted strong negative correlations (>95 %) between habitat use and SST. Higher trip distance and/or duration during brooding were associated with decreased reproductive success.

Conclusions: Our findings suggest that during adverse conditions (La Niña conditions, high NPGO, northward displacement of the TZCF), both Laysan and Black-footed albatrosses took longer foraging trips and/or traveled farther during brooding, likely resulting in a lower reproductive success due to increased energetic costs. Our results link climate variability with both albatross behavior and reproductive success, information that is critical for predicting how albatross populations will respond to future climate change.

No MeSH data available.


Related in: MedlinePlus