Limits...
Gut Microbiome of an 11th Century A.D. Pre-Columbian Andean Mummy.

Santiago-Rodriguez TM, Fornaciari G, Luciani S, Dowd SE, Toranzos GA, Marota I, Cano RJ - PLoS ONE (2015)

Bottom Line: Unexpectedly, putative antibiotic-resistance genes including beta-lactamases, penicillin-binding proteins, resistance to fosfomycin, chloramphenicol, aminoglycosides, macrolides, sulfa, quinolones, tetracycline and vancomycin, and multi-drug transporters, were also identified.The presence of putative antibiotic-resistance genes suggests that resistance may not necessarily be associated with a selective pressure of antibiotics or contact with European cultures.Identification of pathogens and antibiotic-resistance genes in ancient human specimens will aid in the understanding of the evolution of pathogens as a way to treat and prevent diseases caused by bacteria, microbial eukaryotes and viruses.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology, University of California San Diego, San Diego, CA, United States of America.

ABSTRACT
The process of natural mummification is a rare and unique process from which little is known about the resulting microbial community structure. In the present study, we characterized the microbiome of paleofeces, and ascending, transverse and descending colon of an 11th century A.D. pre-Columbian Andean mummy by 16S rRNA gene high-throughput sequencing and metagenomics. Firmicutes were the most abundant bacterial group, with Clostridium spp. comprising up to 96.2% of the mummified gut, while Turicibacter spp. represented 89.2% of the bacteria identified in the paleofeces. Microbiome profile of the paleofeces was unique when compared to previously characterized coprolites that did not undergo natural mummification. We identified DNA sequences homologous to Clostridium botulinum, Trypanosoma cruzi and human papillomaviruses (HPVs). Unexpectedly, putative antibiotic-resistance genes including beta-lactamases, penicillin-binding proteins, resistance to fosfomycin, chloramphenicol, aminoglycosides, macrolides, sulfa, quinolones, tetracycline and vancomycin, and multi-drug transporters, were also identified. The presence of putative antibiotic-resistance genes suggests that resistance may not necessarily be associated with a selective pressure of antibiotics or contact with European cultures. Identification of pathogens and antibiotic-resistance genes in ancient human specimens will aid in the understanding of the evolution of pathogens as a way to treat and prevent diseases caused by bacteria, microbial eukaryotes and viruses.

No MeSH data available.


Related in: MedlinePlus

Bar charts representing bacterial taxonomy based on 16S rRNA gene at the genus level for coprolites that did not undergo natural mummification (Saladoid and Huecoid cultures) and the mummified paleofeces.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4589460&req=5

pone.0138135.g005: Bar charts representing bacterial taxonomy based on 16S rRNA gene at the genus level for coprolites that did not undergo natural mummification (Saladoid and Huecoid cultures) and the mummified paleofeces.

Mentions: At the genus level, 66.7%, 90.2%, 27.7% and 37.6% of the paleofeces, and descending, transverse and ascending colon microbiomes could not be taxonomically assigned. Sequences that were taxonomically assigned at the genus level corresponded mostly to Clostridium and Turicibacter spp. (Fig 4). Clostridium spp. comprised 7.7%, 81.4%, 96.2% and 68.3% of the paleofeces (Fig 4A), and descending (Fig 4B), transverse (Fig 4C) and ascending colon (Fig 4D) microbiomes, respectively. All the taxonomical assignments at the genus level for the paleofeces, and descending, transverse and ascending colon are listed in S1 Table. The paleofeces were taxonomically compared with the mean relative abundances of coprolites that did not undergo natural mummification, corresponding to the Saladoid and Huecoid pre-Columbian cultures. The taxonomical composition of the pre-Columbian coprolites of the Saladoid and Huecoid cultures was distinct when compared to the paleofeces. Pseudomonas is among the most represented genus in the Saladoid and Huecoid coprolites, while Turicibacter is well represented in the mummy’s paleofeces and was not identified in the Saladoid or Huecoid coprolites (Fig 5).


Gut Microbiome of an 11th Century A.D. Pre-Columbian Andean Mummy.

Santiago-Rodriguez TM, Fornaciari G, Luciani S, Dowd SE, Toranzos GA, Marota I, Cano RJ - PLoS ONE (2015)

Bar charts representing bacterial taxonomy based on 16S rRNA gene at the genus level for coprolites that did not undergo natural mummification (Saladoid and Huecoid cultures) and the mummified paleofeces.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4589460&req=5

pone.0138135.g005: Bar charts representing bacterial taxonomy based on 16S rRNA gene at the genus level for coprolites that did not undergo natural mummification (Saladoid and Huecoid cultures) and the mummified paleofeces.
Mentions: At the genus level, 66.7%, 90.2%, 27.7% and 37.6% of the paleofeces, and descending, transverse and ascending colon microbiomes could not be taxonomically assigned. Sequences that were taxonomically assigned at the genus level corresponded mostly to Clostridium and Turicibacter spp. (Fig 4). Clostridium spp. comprised 7.7%, 81.4%, 96.2% and 68.3% of the paleofeces (Fig 4A), and descending (Fig 4B), transverse (Fig 4C) and ascending colon (Fig 4D) microbiomes, respectively. All the taxonomical assignments at the genus level for the paleofeces, and descending, transverse and ascending colon are listed in S1 Table. The paleofeces were taxonomically compared with the mean relative abundances of coprolites that did not undergo natural mummification, corresponding to the Saladoid and Huecoid pre-Columbian cultures. The taxonomical composition of the pre-Columbian coprolites of the Saladoid and Huecoid cultures was distinct when compared to the paleofeces. Pseudomonas is among the most represented genus in the Saladoid and Huecoid coprolites, while Turicibacter is well represented in the mummy’s paleofeces and was not identified in the Saladoid or Huecoid coprolites (Fig 5).

Bottom Line: Unexpectedly, putative antibiotic-resistance genes including beta-lactamases, penicillin-binding proteins, resistance to fosfomycin, chloramphenicol, aminoglycosides, macrolides, sulfa, quinolones, tetracycline and vancomycin, and multi-drug transporters, were also identified.The presence of putative antibiotic-resistance genes suggests that resistance may not necessarily be associated with a selective pressure of antibiotics or contact with European cultures.Identification of pathogens and antibiotic-resistance genes in ancient human specimens will aid in the understanding of the evolution of pathogens as a way to treat and prevent diseases caused by bacteria, microbial eukaryotes and viruses.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology, University of California San Diego, San Diego, CA, United States of America.

ABSTRACT
The process of natural mummification is a rare and unique process from which little is known about the resulting microbial community structure. In the present study, we characterized the microbiome of paleofeces, and ascending, transverse and descending colon of an 11th century A.D. pre-Columbian Andean mummy by 16S rRNA gene high-throughput sequencing and metagenomics. Firmicutes were the most abundant bacterial group, with Clostridium spp. comprising up to 96.2% of the mummified gut, while Turicibacter spp. represented 89.2% of the bacteria identified in the paleofeces. Microbiome profile of the paleofeces was unique when compared to previously characterized coprolites that did not undergo natural mummification. We identified DNA sequences homologous to Clostridium botulinum, Trypanosoma cruzi and human papillomaviruses (HPVs). Unexpectedly, putative antibiotic-resistance genes including beta-lactamases, penicillin-binding proteins, resistance to fosfomycin, chloramphenicol, aminoglycosides, macrolides, sulfa, quinolones, tetracycline and vancomycin, and multi-drug transporters, were also identified. The presence of putative antibiotic-resistance genes suggests that resistance may not necessarily be associated with a selective pressure of antibiotics or contact with European cultures. Identification of pathogens and antibiotic-resistance genes in ancient human specimens will aid in the understanding of the evolution of pathogens as a way to treat and prevent diseases caused by bacteria, microbial eukaryotes and viruses.

No MeSH data available.


Related in: MedlinePlus