Limits...
Gut Microbiome of an 11th Century A.D. Pre-Columbian Andean Mummy.

Santiago-Rodriguez TM, Fornaciari G, Luciani S, Dowd SE, Toranzos GA, Marota I, Cano RJ - PLoS ONE (2015)

Bottom Line: Unexpectedly, putative antibiotic-resistance genes including beta-lactamases, penicillin-binding proteins, resistance to fosfomycin, chloramphenicol, aminoglycosides, macrolides, sulfa, quinolones, tetracycline and vancomycin, and multi-drug transporters, were also identified.The presence of putative antibiotic-resistance genes suggests that resistance may not necessarily be associated with a selective pressure of antibiotics or contact with European cultures.Identification of pathogens and antibiotic-resistance genes in ancient human specimens will aid in the understanding of the evolution of pathogens as a way to treat and prevent diseases caused by bacteria, microbial eukaryotes and viruses.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology, University of California San Diego, San Diego, CA, United States of America.

ABSTRACT
The process of natural mummification is a rare and unique process from which little is known about the resulting microbial community structure. In the present study, we characterized the microbiome of paleofeces, and ascending, transverse and descending colon of an 11th century A.D. pre-Columbian Andean mummy by 16S rRNA gene high-throughput sequencing and metagenomics. Firmicutes were the most abundant bacterial group, with Clostridium spp. comprising up to 96.2% of the mummified gut, while Turicibacter spp. represented 89.2% of the bacteria identified in the paleofeces. Microbiome profile of the paleofeces was unique when compared to previously characterized coprolites that did not undergo natural mummification. We identified DNA sequences homologous to Clostridium botulinum, Trypanosoma cruzi and human papillomaviruses (HPVs). Unexpectedly, putative antibiotic-resistance genes including beta-lactamases, penicillin-binding proteins, resistance to fosfomycin, chloramphenicol, aminoglycosides, macrolides, sulfa, quinolones, tetracycline and vancomycin, and multi-drug transporters, were also identified. The presence of putative antibiotic-resistance genes suggests that resistance may not necessarily be associated with a selective pressure of antibiotics or contact with European cultures. Identification of pathogens and antibiotic-resistance genes in ancient human specimens will aid in the understanding of the evolution of pathogens as a way to treat and prevent diseases caused by bacteria, microbial eukaryotes and viruses.

No MeSH data available.


Related in: MedlinePlus

Pre-Columbian Andean mummy in this study (Panel A), distended colon with paleofeces (Panel B), and Trypanosoma cruzi amastigotes (Panel C).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4589460&req=5

pone.0138135.g001: Pre-Columbian Andean mummy in this study (Panel A), distended colon with paleofeces (Panel B), and Trypanosoma cruzi amastigotes (Panel C).

Mentions: The specimens utilized for DNA extraction were collected from a female pre-Columbian Andean mummy from Cuzco (Peru) with a 14C dating of 980–1170 A.D., presently stored at the Museum of Anthropology and Ethnology of the University of Florence, Italy, (catalogue number 3076). The body was brought from South America to Italy in the second half of the 19th century by Professor Ernesto Mazzei. Autopsy was performed by paleopathologists G. Fornaciari and colleagues, and specimens were collected from internal organs [17, 27]. The mummy, of estimated age 18–23 years, lied inside a basket made of vegetal fibers (Fig 1A), which contained two drapes covering the body entirely. Only the head was found to be almost completely skeletonized. The mummy was found in fetal position, with ropes tied around the wrists, ankles and hips. The right posterior hemithorax was opened by cutting the skin tissues and the ribs.


Gut Microbiome of an 11th Century A.D. Pre-Columbian Andean Mummy.

Santiago-Rodriguez TM, Fornaciari G, Luciani S, Dowd SE, Toranzos GA, Marota I, Cano RJ - PLoS ONE (2015)

Pre-Columbian Andean mummy in this study (Panel A), distended colon with paleofeces (Panel B), and Trypanosoma cruzi amastigotes (Panel C).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4589460&req=5

pone.0138135.g001: Pre-Columbian Andean mummy in this study (Panel A), distended colon with paleofeces (Panel B), and Trypanosoma cruzi amastigotes (Panel C).
Mentions: The specimens utilized for DNA extraction were collected from a female pre-Columbian Andean mummy from Cuzco (Peru) with a 14C dating of 980–1170 A.D., presently stored at the Museum of Anthropology and Ethnology of the University of Florence, Italy, (catalogue number 3076). The body was brought from South America to Italy in the second half of the 19th century by Professor Ernesto Mazzei. Autopsy was performed by paleopathologists G. Fornaciari and colleagues, and specimens were collected from internal organs [17, 27]. The mummy, of estimated age 18–23 years, lied inside a basket made of vegetal fibers (Fig 1A), which contained two drapes covering the body entirely. Only the head was found to be almost completely skeletonized. The mummy was found in fetal position, with ropes tied around the wrists, ankles and hips. The right posterior hemithorax was opened by cutting the skin tissues and the ribs.

Bottom Line: Unexpectedly, putative antibiotic-resistance genes including beta-lactamases, penicillin-binding proteins, resistance to fosfomycin, chloramphenicol, aminoglycosides, macrolides, sulfa, quinolones, tetracycline and vancomycin, and multi-drug transporters, were also identified.The presence of putative antibiotic-resistance genes suggests that resistance may not necessarily be associated with a selective pressure of antibiotics or contact with European cultures.Identification of pathogens and antibiotic-resistance genes in ancient human specimens will aid in the understanding of the evolution of pathogens as a way to treat and prevent diseases caused by bacteria, microbial eukaryotes and viruses.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology, University of California San Diego, San Diego, CA, United States of America.

ABSTRACT
The process of natural mummification is a rare and unique process from which little is known about the resulting microbial community structure. In the present study, we characterized the microbiome of paleofeces, and ascending, transverse and descending colon of an 11th century A.D. pre-Columbian Andean mummy by 16S rRNA gene high-throughput sequencing and metagenomics. Firmicutes were the most abundant bacterial group, with Clostridium spp. comprising up to 96.2% of the mummified gut, while Turicibacter spp. represented 89.2% of the bacteria identified in the paleofeces. Microbiome profile of the paleofeces was unique when compared to previously characterized coprolites that did not undergo natural mummification. We identified DNA sequences homologous to Clostridium botulinum, Trypanosoma cruzi and human papillomaviruses (HPVs). Unexpectedly, putative antibiotic-resistance genes including beta-lactamases, penicillin-binding proteins, resistance to fosfomycin, chloramphenicol, aminoglycosides, macrolides, sulfa, quinolones, tetracycline and vancomycin, and multi-drug transporters, were also identified. The presence of putative antibiotic-resistance genes suggests that resistance may not necessarily be associated with a selective pressure of antibiotics or contact with European cultures. Identification of pathogens and antibiotic-resistance genes in ancient human specimens will aid in the understanding of the evolution of pathogens as a way to treat and prevent diseases caused by bacteria, microbial eukaryotes and viruses.

No MeSH data available.


Related in: MedlinePlus