Limits...
A Conservation-Based Approach to Compensation for Livestock Depredation: The Florida Panther Case Study.

Jacobs CE, Main MB - PLoS ONE (2015)

Bottom Line: Depredation sites of tagged calves had a significantly greater probability of panther presence than depredation sites of untagged calves that were found by ranchers in open pastures.This suggests that there may be more calves killed in high risk environments than are being found and reported by ranchers and that panthers can hunt effectively in open environments.We suggest that our approach could be applied to prioritize and categorize private lands for participation in a Payment for Ecosystem Services program that compensates landowners for livestock loss and incentivizes conserving high quality habitat for large carnivores where livestock depredation is a concern.

View Article: PubMed Central - PubMed

Affiliation: Department of Wildlife Ecology and Conservation, University of Florida Institute of Food and Agricultural Sciences, Gainesville, Florida, United States of America.

ABSTRACT
Calf (Bos taurus) depredation by the federally endangered Florida panther (Puma concolor coryi) on ranches in southwest Florida is an important issue because ranches represent mixed landscapes that provide habitat critical to panther recovery. The objectives of this study were to (1) quantify calf depredation by panthers on two ranches in southwest Florida, and (2) develop a habitat suitability model to evaluate the quality of panther hunting habitat on ranchlands, assess whether the model could predict predation risk to calves, and discuss its potential to be incorporated into an incentive-based compensation program. We ear-tagged 409 calves with VHF transmitters on two ranches during 2011-2013 to document calf mortality. We developed a model to evaluate the quality of panther hunting habitat on private lands in southwest Florida using environmental variables obtained from the Florida Natural Areas Inventory (FNAI) Cooperative Landcover Database and nocturnal GPS locations of panthers provided by the Florida Fish and Wildlife Conservation Commission (FWC). We then tested whether the model could predict the location of calf depredation sites. Tagged calf loss to panthers varied between the two ranches (0.5%/yr to 5.3%/yr) and may have been influenced by the amount of panther hunting habitat on each ranch as the ranch that experienced higher depredation rates contained a significantly higher probability of panther presence. Depredation sites of tagged calves had a significantly greater probability of panther presence than depredation sites of untagged calves that were found by ranchers in open pastures. This suggests that there may be more calves killed in high risk environments than are being found and reported by ranchers and that panthers can hunt effectively in open environments. It also suggests that the model may provide a means for evaluating the quality of panther hunting habitat and the corresponding risk of depredation to livestock across the landscape. We suggest that our approach could be applied to prioritize and categorize private lands for participation in a Payment for Ecosystem Services program that compensates landowners for livestock loss and incentivizes conserving high quality habitat for large carnivores where livestock depredation is a concern.

No MeSH data available.


Probability of panther presence predicted by the panther hunting habitat model at locations of tagged and untagged calf depredations documented in southwest Florida.Points are arbitrarily distributed along the x-axis for illustrative purposes (to prevent overlapping points) and do not reflect a time series.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4589380&req=5

pone.0139203.g004: Probability of panther presence predicted by the panther hunting habitat model at locations of tagged and untagged calf depredations documented in southwest Florida.Points are arbitrarily distributed along the x-axis for illustrative purposes (to prevent overlapping points) and do not reflect a time series.

Mentions: The panther hunting habitat model indicated that the JB Ranch study area contained a higher probability of panther presence (0.50 ± 0.16) than the IM Ranch study area (0.29 ± 0.14), and that these differences were significant (U = 463,780,767; p < 0.05) (Fig 3). To place this in perspective, nearly half (47%) of the JB Ranch study area had a probability of >0.50 of panther presence, whereas only 3% of the IM Ranch study area had a probability of >0.50 of panther presence. Model results were consistent with analysis comparing the amount and distribution of land cover types across each ranch [38] (S5 Table). We found that the mean probability of panther presence associated with the kill site (100 m radius around cache site) differed between tagged and untagged calves. The probability of panther presence was 0.60 around tagged calves (n = 11), 0.42 around untagged locations (n = 17), and 0.50 around all locations (n = 28) (Fig 4). Depredation sites of tagged calves (0.60 ± 0.06) had a significantly greater (t22 = 4.08, p < 0.05) probability of panther presence than depredation sites of untagged calves (0.42 ± 0.16).


A Conservation-Based Approach to Compensation for Livestock Depredation: The Florida Panther Case Study.

Jacobs CE, Main MB - PLoS ONE (2015)

Probability of panther presence predicted by the panther hunting habitat model at locations of tagged and untagged calf depredations documented in southwest Florida.Points are arbitrarily distributed along the x-axis for illustrative purposes (to prevent overlapping points) and do not reflect a time series.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4589380&req=5

pone.0139203.g004: Probability of panther presence predicted by the panther hunting habitat model at locations of tagged and untagged calf depredations documented in southwest Florida.Points are arbitrarily distributed along the x-axis for illustrative purposes (to prevent overlapping points) and do not reflect a time series.
Mentions: The panther hunting habitat model indicated that the JB Ranch study area contained a higher probability of panther presence (0.50 ± 0.16) than the IM Ranch study area (0.29 ± 0.14), and that these differences were significant (U = 463,780,767; p < 0.05) (Fig 3). To place this in perspective, nearly half (47%) of the JB Ranch study area had a probability of >0.50 of panther presence, whereas only 3% of the IM Ranch study area had a probability of >0.50 of panther presence. Model results were consistent with analysis comparing the amount and distribution of land cover types across each ranch [38] (S5 Table). We found that the mean probability of panther presence associated with the kill site (100 m radius around cache site) differed between tagged and untagged calves. The probability of panther presence was 0.60 around tagged calves (n = 11), 0.42 around untagged locations (n = 17), and 0.50 around all locations (n = 28) (Fig 4). Depredation sites of tagged calves (0.60 ± 0.06) had a significantly greater (t22 = 4.08, p < 0.05) probability of panther presence than depredation sites of untagged calves (0.42 ± 0.16).

Bottom Line: Depredation sites of tagged calves had a significantly greater probability of panther presence than depredation sites of untagged calves that were found by ranchers in open pastures.This suggests that there may be more calves killed in high risk environments than are being found and reported by ranchers and that panthers can hunt effectively in open environments.We suggest that our approach could be applied to prioritize and categorize private lands for participation in a Payment for Ecosystem Services program that compensates landowners for livestock loss and incentivizes conserving high quality habitat for large carnivores where livestock depredation is a concern.

View Article: PubMed Central - PubMed

Affiliation: Department of Wildlife Ecology and Conservation, University of Florida Institute of Food and Agricultural Sciences, Gainesville, Florida, United States of America.

ABSTRACT
Calf (Bos taurus) depredation by the federally endangered Florida panther (Puma concolor coryi) on ranches in southwest Florida is an important issue because ranches represent mixed landscapes that provide habitat critical to panther recovery. The objectives of this study were to (1) quantify calf depredation by panthers on two ranches in southwest Florida, and (2) develop a habitat suitability model to evaluate the quality of panther hunting habitat on ranchlands, assess whether the model could predict predation risk to calves, and discuss its potential to be incorporated into an incentive-based compensation program. We ear-tagged 409 calves with VHF transmitters on two ranches during 2011-2013 to document calf mortality. We developed a model to evaluate the quality of panther hunting habitat on private lands in southwest Florida using environmental variables obtained from the Florida Natural Areas Inventory (FNAI) Cooperative Landcover Database and nocturnal GPS locations of panthers provided by the Florida Fish and Wildlife Conservation Commission (FWC). We then tested whether the model could predict the location of calf depredation sites. Tagged calf loss to panthers varied between the two ranches (0.5%/yr to 5.3%/yr) and may have been influenced by the amount of panther hunting habitat on each ranch as the ranch that experienced higher depredation rates contained a significantly higher probability of panther presence. Depredation sites of tagged calves had a significantly greater probability of panther presence than depredation sites of untagged calves that were found by ranchers in open pastures. This suggests that there may be more calves killed in high risk environments than are being found and reported by ranchers and that panthers can hunt effectively in open environments. It also suggests that the model may provide a means for evaluating the quality of panther hunting habitat and the corresponding risk of depredation to livestock across the landscape. We suggest that our approach could be applied to prioritize and categorize private lands for participation in a Payment for Ecosystem Services program that compensates landowners for livestock loss and incentivizes conserving high quality habitat for large carnivores where livestock depredation is a concern.

No MeSH data available.