Limits...
Molecular detection and characterization of Babesia bovis, Babesia bigemina, Theileria species and Anaplasma marginale isolated from cattle in Kenya.

Adjou Moumouni PF, Aboge GO, Terkawi MA, Masatani T, Cao S, Kamyingkird K, Jirapattharasate C, Zhou M, Wang G, Liu M, Iguchi A, Vudriko P, Ybanez AP, Inokuma H, Shirafuji-Umemiya R, Suzuki H, Xuan X - Parasit Vectors (2015)

Bottom Line: B. bovis spherical body protein 4, B. bigemina rhoptry-associated protein 1a, A. marginale major surface protein 5, Theileria spp. 18S rRNA, T. parva p104 and T. orientalis major piroplasm surface protein were used as the marker genes.B. bovis, B. bigemina, T. parva, T. velifera, T. taurotragi, T. mutans and A. marginale were prevalent in both farms, whereas T. ovis, Theileria sp. (buffalo) and T. orientalis were found only in Ngong farm.The current findings reaffirm the endemicity and co-infection of cattle with tick-borne hemoparasites, and the role of wildlife in pathogens transmission and population genetics in Kenya.

View Article: PubMed Central - PubMed

Affiliation: National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan. chakirou82@yahoo.fr.

ABSTRACT

Background: Infections with Babesia bovis, Babesia bigemina, Theileria species and Anaplasma marginale are endemic in Kenya yet there is a lack of adequate information on their genotypes. This study established the genetic diversities of the above tick-borne hemoparasites infecting cattle in Kenya.

Methods: Nested PCR and sequencing were used to determine the prevalence and genetic diversity of the above parasites in 192 cattle blood samples collected from Ngong and Machakos farms. B. bovis spherical body protein 4, B. bigemina rhoptry-associated protein 1a, A. marginale major surface protein 5, Theileria spp. 18S rRNA, T. parva p104 and T. orientalis major piroplasm surface protein were used as the marker genes.

Results: B. bovis, B. bigemina, T. parva, T. velifera, T. taurotragi, T. mutans and A. marginale were prevalent in both farms, whereas T. ovis, Theileria sp. (buffalo) and T. orientalis were found only in Ngong farm. Co-infections were observed in more than 50 % of positive samples in both farms. Babesia parasites and A. marginale sequences were highly conserved while T. parva and T. orientalis were polymorphic. Cattle-derived T. parva was detected in Machakos farm. However, cattle and buffalo-derived Theileria were detected in Ngong farm suggesting interactions between cattle and wild buffaloes. Generally, the pathogens detected in Kenya were genetically related to the other African isolates but different from the isolates in other continents.

Conclusions: The current findings reaffirm the endemicity and co-infection of cattle with tick-borne hemoparasites, and the role of wildlife in pathogens transmission and population genetics in Kenya.

No MeSH data available.


Related in: MedlinePlus

Phylogenetic analyses of T. orientalis MPSP gene sequences obtained from Kenyan cattle. The tree was constructed with the maximum likelihood method using the Tamura 3 parameter with Gamma distribution (T92 + G) model in the MEGA ver. 6. T. annulata (Ankara strain) merozoite surface antigen 1 gene (Tams1) was used as outgroup. The sequences determined in this study are shown in bold-font. Numbers on the branches show percentages of 1000 bootstrap replications. The scale bar indicates estimated number of substitutions per site
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4589125&req=5

Fig5: Phylogenetic analyses of T. orientalis MPSP gene sequences obtained from Kenyan cattle. The tree was constructed with the maximum likelihood method using the Tamura 3 parameter with Gamma distribution (T92 + G) model in the MEGA ver. 6. T. annulata (Ankara strain) merozoite surface antigen 1 gene (Tams1) was used as outgroup. The sequences determined in this study are shown in bold-font. Numbers on the branches show percentages of 1000 bootstrap replications. The scale bar indicates estimated number of substitutions per site

Mentions: Phylogenetic analyses were done to determine whether the tick-borne pathogens are genetically diverse within different geographical regions of the world. Analysis based on SBP-4 gene grouped the Kenyan B. bovis isolates in the same clade (Clade 1) as Egyptian, Ghanaian and South African isolates (Fig. 1). The other B. bovis isolates from Thailand, Syria, Mexico, Brazil, Mongolia and United States of America (USA) were grouped in a separate clade. The Kenyan B. bigemina isolate belonged to the same clade as the isolates from Egypt, Thailand, Syria and Mexico (Fig. 2). A further phylogeny using the Msp5 gene grouped the Kenyan A. marginale isolates in the same clade as the isolates from China, Australia, Brazil and The Philippines (Fig. 3). However, isolates from USA and Cuba were grouped in a different clade. For T. parva, the [KP347565] and [KP347566] isolates were closely related to the cattle-derived genotypes while the other isolate [KP347564] was related to the buffalo-derived T. parva genotypes (Fig. 4). The polymorphism of T. parva p104 nucleotide sequences is shown in an additional file [see Additional file 3]. The phylogenetic analysis based on MPSP gene of T. orientalis/sergenti/buffeli grouped three of the isolates of this study [KP347560, KP347562 and KP347563] in the same clade and these isolates were classified as MPSP type 3. The divergent isolate [KP347561] belonged to a separate clade and was identified as MPSP type 5 (Fig. 5).Fig. 1


Molecular detection and characterization of Babesia bovis, Babesia bigemina, Theileria species and Anaplasma marginale isolated from cattle in Kenya.

Adjou Moumouni PF, Aboge GO, Terkawi MA, Masatani T, Cao S, Kamyingkird K, Jirapattharasate C, Zhou M, Wang G, Liu M, Iguchi A, Vudriko P, Ybanez AP, Inokuma H, Shirafuji-Umemiya R, Suzuki H, Xuan X - Parasit Vectors (2015)

Phylogenetic analyses of T. orientalis MPSP gene sequences obtained from Kenyan cattle. The tree was constructed with the maximum likelihood method using the Tamura 3 parameter with Gamma distribution (T92 + G) model in the MEGA ver. 6. T. annulata (Ankara strain) merozoite surface antigen 1 gene (Tams1) was used as outgroup. The sequences determined in this study are shown in bold-font. Numbers on the branches show percentages of 1000 bootstrap replications. The scale bar indicates estimated number of substitutions per site
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4589125&req=5

Fig5: Phylogenetic analyses of T. orientalis MPSP gene sequences obtained from Kenyan cattle. The tree was constructed with the maximum likelihood method using the Tamura 3 parameter with Gamma distribution (T92 + G) model in the MEGA ver. 6. T. annulata (Ankara strain) merozoite surface antigen 1 gene (Tams1) was used as outgroup. The sequences determined in this study are shown in bold-font. Numbers on the branches show percentages of 1000 bootstrap replications. The scale bar indicates estimated number of substitutions per site
Mentions: Phylogenetic analyses were done to determine whether the tick-borne pathogens are genetically diverse within different geographical regions of the world. Analysis based on SBP-4 gene grouped the Kenyan B. bovis isolates in the same clade (Clade 1) as Egyptian, Ghanaian and South African isolates (Fig. 1). The other B. bovis isolates from Thailand, Syria, Mexico, Brazil, Mongolia and United States of America (USA) were grouped in a separate clade. The Kenyan B. bigemina isolate belonged to the same clade as the isolates from Egypt, Thailand, Syria and Mexico (Fig. 2). A further phylogeny using the Msp5 gene grouped the Kenyan A. marginale isolates in the same clade as the isolates from China, Australia, Brazil and The Philippines (Fig. 3). However, isolates from USA and Cuba were grouped in a different clade. For T. parva, the [KP347565] and [KP347566] isolates were closely related to the cattle-derived genotypes while the other isolate [KP347564] was related to the buffalo-derived T. parva genotypes (Fig. 4). The polymorphism of T. parva p104 nucleotide sequences is shown in an additional file [see Additional file 3]. The phylogenetic analysis based on MPSP gene of T. orientalis/sergenti/buffeli grouped three of the isolates of this study [KP347560, KP347562 and KP347563] in the same clade and these isolates were classified as MPSP type 3. The divergent isolate [KP347561] belonged to a separate clade and was identified as MPSP type 5 (Fig. 5).Fig. 1

Bottom Line: B. bovis spherical body protein 4, B. bigemina rhoptry-associated protein 1a, A. marginale major surface protein 5, Theileria spp. 18S rRNA, T. parva p104 and T. orientalis major piroplasm surface protein were used as the marker genes.B. bovis, B. bigemina, T. parva, T. velifera, T. taurotragi, T. mutans and A. marginale were prevalent in both farms, whereas T. ovis, Theileria sp. (buffalo) and T. orientalis were found only in Ngong farm.The current findings reaffirm the endemicity and co-infection of cattle with tick-borne hemoparasites, and the role of wildlife in pathogens transmission and population genetics in Kenya.

View Article: PubMed Central - PubMed

Affiliation: National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan. chakirou82@yahoo.fr.

ABSTRACT

Background: Infections with Babesia bovis, Babesia bigemina, Theileria species and Anaplasma marginale are endemic in Kenya yet there is a lack of adequate information on their genotypes. This study established the genetic diversities of the above tick-borne hemoparasites infecting cattle in Kenya.

Methods: Nested PCR and sequencing were used to determine the prevalence and genetic diversity of the above parasites in 192 cattle blood samples collected from Ngong and Machakos farms. B. bovis spherical body protein 4, B. bigemina rhoptry-associated protein 1a, A. marginale major surface protein 5, Theileria spp. 18S rRNA, T. parva p104 and T. orientalis major piroplasm surface protein were used as the marker genes.

Results: B. bovis, B. bigemina, T. parva, T. velifera, T. taurotragi, T. mutans and A. marginale were prevalent in both farms, whereas T. ovis, Theileria sp. (buffalo) and T. orientalis were found only in Ngong farm. Co-infections were observed in more than 50 % of positive samples in both farms. Babesia parasites and A. marginale sequences were highly conserved while T. parva and T. orientalis were polymorphic. Cattle-derived T. parva was detected in Machakos farm. However, cattle and buffalo-derived Theileria were detected in Ngong farm suggesting interactions between cattle and wild buffaloes. Generally, the pathogens detected in Kenya were genetically related to the other African isolates but different from the isolates in other continents.

Conclusions: The current findings reaffirm the endemicity and co-infection of cattle with tick-borne hemoparasites, and the role of wildlife in pathogens transmission and population genetics in Kenya.

No MeSH data available.


Related in: MedlinePlus