Limits...
Integrating Multiple Analytical Datasets to Compare Metabolite Profiles of Mouse Colonic-Cecal Contents and Feces.

Zeng H, Grapov D, Jackson MI, Fahrmann J, Fiehn O, Combs GF - Metabolites (2015)

Bottom Line: We detected a total of 270 low molecular weight metabolites in colonic-cecal contents and feces by gas chromatograph, time-of-flight mass spectrometry (GC-TOF) and ultra-high performance liquid chromatography, quadrapole time-of-flight mass spectrometry (UPLC-Q-TOF).Of that number, 251 (93%) were present in both types of specimen, representing almost all known biochemical pathways related to the amino acid, carbohydrate, energy, lipid, membrane transport, nucleotide, genetic information processing, and cancer-related metabolism.A total of 115 metabolites differed significantly in relative abundance between both colonic-cecal contents and feces.

View Article: PubMed Central - PubMed

Affiliation: Grand Forks Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Grand Forks, ND 58203, USA. huawei.zeng@ars.usda.gov.

ABSTRACT
The pattern of metabolites produced by the gut microbiome comprises a phenotype indicative of the means by which that microbiome affects the gut. We characterized that phenotype in mice by conducting metabolomic analyses of the colonic-cecal contents, comparing that to the metabolite patterns of feces in order to determine the suitability of fecal specimens as proxies for assessing the metabolic impact of the gut microbiome. We detected a total of 270 low molecular weight metabolites in colonic-cecal contents and feces by gas chromatograph, time-of-flight mass spectrometry (GC-TOF) and ultra-high performance liquid chromatography, quadrapole time-of-flight mass spectrometry (UPLC-Q-TOF). Of that number, 251 (93%) were present in both types of specimen, representing almost all known biochemical pathways related to the amino acid, carbohydrate, energy, lipid, membrane transport, nucleotide, genetic information processing, and cancer-related metabolism. A total of 115 metabolites differed significantly in relative abundance between both colonic-cecal contents and feces. These data comprise the first characterization of relationships among metabolites present in the colonic-cecal contents and feces in a healthy mouse model, and shows that feces can be a useful proxy for assessing the pattern of metabolites to which the colonic mucosum is exposed.

No MeSH data available.


Biochemical and chemical similarity network highlighting important differences in metabolites abundance between colonic-cecal content and feces. Vertex size encodes the fold change in metabolite abundance between groups (when the metabolite abundance in colonic-cecal content was higher than that in feces, we defined it as “increase”; in contrast, if the metabolite abundance in colonic-cecal content was lower than that in feces, we defined it as “decrease”). Vertex shape (triangle, increase; “V”, decrease; ellipse, no change) and color (blue, decrease; red, increase; gray, insignificant change or p > 0.05 after-adjustment for FDR) are used to encode the significance and relative direction of changes in metabolites between colonic-cecal content and feces comparison.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4588808&req=5

metabolites-05-00489-f004: Biochemical and chemical similarity network highlighting important differences in metabolites abundance between colonic-cecal content and feces. Vertex size encodes the fold change in metabolite abundance between groups (when the metabolite abundance in colonic-cecal content was higher than that in feces, we defined it as “increase”; in contrast, if the metabolite abundance in colonic-cecal content was lower than that in feces, we defined it as “decrease”). Vertex shape (triangle, increase; “V”, decrease; ellipse, no change) and color (blue, decrease; red, increase; gray, insignificant change or p > 0.05 after-adjustment for FDR) are used to encode the significance and relative direction of changes in metabolites between colonic-cecal content and feces comparison.

Mentions: Biochemical network analysis (defined by KEGG) revealed that the abundance of most carbohydrate metabolites (e.g., galactose-6-phosphase, erythrose), and amino acid metabolites (e.g., glutamic acid, aspartic acid, leucine, valine) were greater in colonic cecal contents than that in feces (Figure 4, Table S1). This is in agreement with the fact that complex carbohydrates and poorly digested proteins may reach the hind gut to be available for colonic bacterial fermentation [11,12,13,14,20]. In contrast, the contents of most fatty acid-related metabolites (e.g., linoleic acid, jasmonic acid, and phospholipid) were greater in feces than in colonic-cecal contents (Figure 4, Table S1). The higher content of phospholipid in feces may reflect bacterial breakdown [12,21].


Integrating Multiple Analytical Datasets to Compare Metabolite Profiles of Mouse Colonic-Cecal Contents and Feces.

Zeng H, Grapov D, Jackson MI, Fahrmann J, Fiehn O, Combs GF - Metabolites (2015)

Biochemical and chemical similarity network highlighting important differences in metabolites abundance between colonic-cecal content and feces. Vertex size encodes the fold change in metabolite abundance between groups (when the metabolite abundance in colonic-cecal content was higher than that in feces, we defined it as “increase”; in contrast, if the metabolite abundance in colonic-cecal content was lower than that in feces, we defined it as “decrease”). Vertex shape (triangle, increase; “V”, decrease; ellipse, no change) and color (blue, decrease; red, increase; gray, insignificant change or p > 0.05 after-adjustment for FDR) are used to encode the significance and relative direction of changes in metabolites between colonic-cecal content and feces comparison.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4588808&req=5

metabolites-05-00489-f004: Biochemical and chemical similarity network highlighting important differences in metabolites abundance between colonic-cecal content and feces. Vertex size encodes the fold change in metabolite abundance between groups (when the metabolite abundance in colonic-cecal content was higher than that in feces, we defined it as “increase”; in contrast, if the metabolite abundance in colonic-cecal content was lower than that in feces, we defined it as “decrease”). Vertex shape (triangle, increase; “V”, decrease; ellipse, no change) and color (blue, decrease; red, increase; gray, insignificant change or p > 0.05 after-adjustment for FDR) are used to encode the significance and relative direction of changes in metabolites between colonic-cecal content and feces comparison.
Mentions: Biochemical network analysis (defined by KEGG) revealed that the abundance of most carbohydrate metabolites (e.g., galactose-6-phosphase, erythrose), and amino acid metabolites (e.g., glutamic acid, aspartic acid, leucine, valine) were greater in colonic cecal contents than that in feces (Figure 4, Table S1). This is in agreement with the fact that complex carbohydrates and poorly digested proteins may reach the hind gut to be available for colonic bacterial fermentation [11,12,13,14,20]. In contrast, the contents of most fatty acid-related metabolites (e.g., linoleic acid, jasmonic acid, and phospholipid) were greater in feces than in colonic-cecal contents (Figure 4, Table S1). The higher content of phospholipid in feces may reflect bacterial breakdown [12,21].

Bottom Line: We detected a total of 270 low molecular weight metabolites in colonic-cecal contents and feces by gas chromatograph, time-of-flight mass spectrometry (GC-TOF) and ultra-high performance liquid chromatography, quadrapole time-of-flight mass spectrometry (UPLC-Q-TOF).Of that number, 251 (93%) were present in both types of specimen, representing almost all known biochemical pathways related to the amino acid, carbohydrate, energy, lipid, membrane transport, nucleotide, genetic information processing, and cancer-related metabolism.A total of 115 metabolites differed significantly in relative abundance between both colonic-cecal contents and feces.

View Article: PubMed Central - PubMed

Affiliation: Grand Forks Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Grand Forks, ND 58203, USA. huawei.zeng@ars.usda.gov.

ABSTRACT
The pattern of metabolites produced by the gut microbiome comprises a phenotype indicative of the means by which that microbiome affects the gut. We characterized that phenotype in mice by conducting metabolomic analyses of the colonic-cecal contents, comparing that to the metabolite patterns of feces in order to determine the suitability of fecal specimens as proxies for assessing the metabolic impact of the gut microbiome. We detected a total of 270 low molecular weight metabolites in colonic-cecal contents and feces by gas chromatograph, time-of-flight mass spectrometry (GC-TOF) and ultra-high performance liquid chromatography, quadrapole time-of-flight mass spectrometry (UPLC-Q-TOF). Of that number, 251 (93%) were present in both types of specimen, representing almost all known biochemical pathways related to the amino acid, carbohydrate, energy, lipid, membrane transport, nucleotide, genetic information processing, and cancer-related metabolism. A total of 115 metabolites differed significantly in relative abundance between both colonic-cecal contents and feces. These data comprise the first characterization of relationships among metabolites present in the colonic-cecal contents and feces in a healthy mouse model, and shows that feces can be a useful proxy for assessing the pattern of metabolites to which the colonic mucosum is exposed.

No MeSH data available.