Limits...
Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content.

Wang Y, Ren X, Sun D, Sun G - Front Plant Sci (2015)

Bottom Line: Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley.Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC.Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm.

View Article: PubMed Central - PubMed

Affiliation: College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China.

ABSTRACT
The origin, evolution, and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-grain protein content (GPC). Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73 to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44%) than cultivated barley. Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC. Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding.

No MeSH data available.


Related in: MedlinePlus

Phylogenetic tree of 214 barley accessions based on the NAM-1 gene. Two major clusters, one comprised of a majority of wild barley accessions (represented in green bar) and another comprised of a majority of cultivated barley accessions (represented in red bar) are separated. The square stands for wild barley accessions: Tibet (Wb-T, red), Southwest Asia (Wb-S, purple), and Central Asia (Wb-C, orange), respectively; the triangle indicates landrace barleys: East Asia (Lb-EA, black), North America (Lb-NA, blue), South America (Lb-SA, pink), Mediterranean Coast Areas (Lb-MA, green), Europe (Lb-EU, yellow), and Australia (Lb-AU, orange).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4588695&req=5

Figure 2: Phylogenetic tree of 214 barley accessions based on the NAM-1 gene. Two major clusters, one comprised of a majority of wild barley accessions (represented in green bar) and another comprised of a majority of cultivated barley accessions (represented in red bar) are separated. The square stands for wild barley accessions: Tibet (Wb-T, red), Southwest Asia (Wb-S, purple), and Central Asia (Wb-C, orange), respectively; the triangle indicates landrace barleys: East Asia (Lb-EA, black), North America (Lb-NA, blue), South America (Lb-SA, pink), Mediterranean Coast Areas (Lb-MA, green), Europe (Lb-EU, yellow), and Australia (Lb-AU, orange).

Mentions: A Phylogenetic tree was constructed to depict genetic relationships among the 214 samples based on the NAM-1 gene (Figure 2). The neighbor-joining analysis placed these samples into two major clusters, one comprised of the majority of wild barley accessions (red bar in Figure 2) and another comprised of the majority of cultivated barley accessions (green bar in Figure 2). However, some Tibetan wild barleys were distinct from the Near Eastern and Central Asian wild barleys, and appeared in the cultivars-dominated cluster. The third cluster comprised of four accession of wild barley from Tibet, three accessions of wild barley from Southwest Asia, and one accession of wild barley from Central Asia.


Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content.

Wang Y, Ren X, Sun D, Sun G - Front Plant Sci (2015)

Phylogenetic tree of 214 barley accessions based on the NAM-1 gene. Two major clusters, one comprised of a majority of wild barley accessions (represented in green bar) and another comprised of a majority of cultivated barley accessions (represented in red bar) are separated. The square stands for wild barley accessions: Tibet (Wb-T, red), Southwest Asia (Wb-S, purple), and Central Asia (Wb-C, orange), respectively; the triangle indicates landrace barleys: East Asia (Lb-EA, black), North America (Lb-NA, blue), South America (Lb-SA, pink), Mediterranean Coast Areas (Lb-MA, green), Europe (Lb-EU, yellow), and Australia (Lb-AU, orange).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4588695&req=5

Figure 2: Phylogenetic tree of 214 barley accessions based on the NAM-1 gene. Two major clusters, one comprised of a majority of wild barley accessions (represented in green bar) and another comprised of a majority of cultivated barley accessions (represented in red bar) are separated. The square stands for wild barley accessions: Tibet (Wb-T, red), Southwest Asia (Wb-S, purple), and Central Asia (Wb-C, orange), respectively; the triangle indicates landrace barleys: East Asia (Lb-EA, black), North America (Lb-NA, blue), South America (Lb-SA, pink), Mediterranean Coast Areas (Lb-MA, green), Europe (Lb-EU, yellow), and Australia (Lb-AU, orange).
Mentions: A Phylogenetic tree was constructed to depict genetic relationships among the 214 samples based on the NAM-1 gene (Figure 2). The neighbor-joining analysis placed these samples into two major clusters, one comprised of the majority of wild barley accessions (red bar in Figure 2) and another comprised of the majority of cultivated barley accessions (green bar in Figure 2). However, some Tibetan wild barleys were distinct from the Near Eastern and Central Asian wild barleys, and appeared in the cultivars-dominated cluster. The third cluster comprised of four accession of wild barley from Tibet, three accessions of wild barley from Southwest Asia, and one accession of wild barley from Central Asia.

Bottom Line: Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley.Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC.Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm.

View Article: PubMed Central - PubMed

Affiliation: College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China.

ABSTRACT
The origin, evolution, and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-grain protein content (GPC). Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73 to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44%) than cultivated barley. Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC. Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding.

No MeSH data available.


Related in: MedlinePlus