Limits...
Effects of exercise on brain and peripheral inflammatory biomarkers induced by total sleep deprivation in rats.

Chennaoui M, Gomez-Merino D, Drogou C, Geoffroy H, Dispersyn G, Langrume C, Ciret S, Gallopin T, Sauvet F - J Inflamm (Lond) (2015)

Bottom Line: Physical exercise induces neuroprotection through anti-inflammatory effects and total sleep deprivation is reported an inflammatory process.Exercise training reduced the sleep deprivation-induced hippocampal IL-1β increases (mRNA expression and protein content) (p < 0.05 and p < 0.001), and TNF-α content (p < 0.001).At the periphery, exercise reduced sleep deprivation-induced increase of IL-6 concentration (p < 0.05) without effect on TNF-α and norepinephrine.

View Article: PubMed Central - PubMed

Affiliation: Département Neurosciences et contraintes opérationnelles, Institut de recherche biomédicale des armées, Brétigny-sur-Orge, France ; Université Paris Descartes, Sorbonne Paris Cité, EA7330 VIFASOM, Paris, France ; Armed Forces Biomedical Research Institute (IRBA), B.P.73, 91223 Brétigny-sur-Orge, Cedex France.

ABSTRACT

Background: Physical exercise induces neuroprotection through anti-inflammatory effects and total sleep deprivation is reported an inflammatory process. We examined whether 7 weeks of exercise training attenuates markers of inflammation during total sleep deprivation (24-h wakefulness) in the rat brain and periphery.

Methods: Four groups of 10 rats were investigated: Sedentary control, Sedentary sleep-deprived, Exercised control, and Exercised sleep-deprived. Sleep deprivation and exercise training were induced using slowly rotating wheels and a motorized treadmill. We examined mRNA expression of pro-inflammatory (IL-1β, TNF-α, and IL-6) cytokine-related genes using real-time PCR, and protein levels in the hippocampus and frontal cortex, as well as circulating concentrations.

Results: Compared to Sedentary control rats, hippocampal and cortical IL-1β mRNA expressions in Sedentary sleep-deprived rats were up-regulated (p < 0.05 and p < 0.01 respectively). At the protein level, hippocampal IL-1β and TNF-α and cortical IL-6 contents were higher in Sedentary sleep-deprived rats (p < 0.001, p < 0.05, p < 0.05, respectively). Peripherally, TNF-α, IL-6 and norepinephrine concentrations were higher in Sedentary sleep-deprived rats compared to Sedentary control (p < 0.01, p < 0.001, p < 0.01, respectively). Exercise training reduced the sleep deprivation-induced hippocampal IL-1β increases (mRNA expression and protein content) (p < 0.05 and p < 0.001), and TNF-α content (p < 0.001). At the periphery, exercise reduced sleep deprivation-induced increase of IL-6 concentration (p < 0.05) without effect on TNF-α and norepinephrine.

Conclusions: We demonstrate that a 7-week exercise training program before acute total sleep deprivation prevents pro-inflammatory responses in the rat hippocampus, particularly the IL-1β cytokine at the gene expression level and protein content.

No MeSH data available.


Related in: MedlinePlus

IL-1β normalized mRNA level (a) and protein content (b) in the frontal cortex and hippocampus of Sedentary control, Exercised control, Sedentary sleep-deprived and Exercised sleep-deprived rats. *Significantly different between Sedentary control rats and Sedentary sleep-deprived (*p < 0.05, **p < 0.01 and ***p < 0.001, respectively), # significantly different between Sedentary sleep-deprived rats and Exercised sleep-deprived (#p < 0.05 and ###p < 0.001), using one-way ANOVA analysis, N = 8–11 rats. Mean (±SEM) values are reported
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4588685&req=5

Fig2: IL-1β normalized mRNA level (a) and protein content (b) in the frontal cortex and hippocampus of Sedentary control, Exercised control, Sedentary sleep-deprived and Exercised sleep-deprived rats. *Significantly different between Sedentary control rats and Sedentary sleep-deprived (*p < 0.05, **p < 0.01 and ***p < 0.001, respectively), # significantly different between Sedentary sleep-deprived rats and Exercised sleep-deprived (#p < 0.05 and ###p < 0.001), using one-way ANOVA analysis, N = 8–11 rats. Mean (±SEM) values are reported

Mentions: The IL-1β mRNA expression was higher in Sedentary sleep-deprived rats compared to Sedentary control rats [F(3,28) = 3.17, p < 0.05]. In addition IL-1β mRNA expression was reduced in Exercised sleep-deprived rats compared to Sedentary sleep-deprived rats (p < 0.05) Fig. 2a. No statistically significant changes in TNF-α and IL-6 mRNA expressions were observed between the four groups of rats (Figs. 3a and 4a).Fig. 2


Effects of exercise on brain and peripheral inflammatory biomarkers induced by total sleep deprivation in rats.

Chennaoui M, Gomez-Merino D, Drogou C, Geoffroy H, Dispersyn G, Langrume C, Ciret S, Gallopin T, Sauvet F - J Inflamm (Lond) (2015)

IL-1β normalized mRNA level (a) and protein content (b) in the frontal cortex and hippocampus of Sedentary control, Exercised control, Sedentary sleep-deprived and Exercised sleep-deprived rats. *Significantly different between Sedentary control rats and Sedentary sleep-deprived (*p < 0.05, **p < 0.01 and ***p < 0.001, respectively), # significantly different between Sedentary sleep-deprived rats and Exercised sleep-deprived (#p < 0.05 and ###p < 0.001), using one-way ANOVA analysis, N = 8–11 rats. Mean (±SEM) values are reported
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4588685&req=5

Fig2: IL-1β normalized mRNA level (a) and protein content (b) in the frontal cortex and hippocampus of Sedentary control, Exercised control, Sedentary sleep-deprived and Exercised sleep-deprived rats. *Significantly different between Sedentary control rats and Sedentary sleep-deprived (*p < 0.05, **p < 0.01 and ***p < 0.001, respectively), # significantly different between Sedentary sleep-deprived rats and Exercised sleep-deprived (#p < 0.05 and ###p < 0.001), using one-way ANOVA analysis, N = 8–11 rats. Mean (±SEM) values are reported
Mentions: The IL-1β mRNA expression was higher in Sedentary sleep-deprived rats compared to Sedentary control rats [F(3,28) = 3.17, p < 0.05]. In addition IL-1β mRNA expression was reduced in Exercised sleep-deprived rats compared to Sedentary sleep-deprived rats (p < 0.05) Fig. 2a. No statistically significant changes in TNF-α and IL-6 mRNA expressions were observed between the four groups of rats (Figs. 3a and 4a).Fig. 2

Bottom Line: Physical exercise induces neuroprotection through anti-inflammatory effects and total sleep deprivation is reported an inflammatory process.Exercise training reduced the sleep deprivation-induced hippocampal IL-1β increases (mRNA expression and protein content) (p < 0.05 and p < 0.001), and TNF-α content (p < 0.001).At the periphery, exercise reduced sleep deprivation-induced increase of IL-6 concentration (p < 0.05) without effect on TNF-α and norepinephrine.

View Article: PubMed Central - PubMed

Affiliation: Département Neurosciences et contraintes opérationnelles, Institut de recherche biomédicale des armées, Brétigny-sur-Orge, France ; Université Paris Descartes, Sorbonne Paris Cité, EA7330 VIFASOM, Paris, France ; Armed Forces Biomedical Research Institute (IRBA), B.P.73, 91223 Brétigny-sur-Orge, Cedex France.

ABSTRACT

Background: Physical exercise induces neuroprotection through anti-inflammatory effects and total sleep deprivation is reported an inflammatory process. We examined whether 7 weeks of exercise training attenuates markers of inflammation during total sleep deprivation (24-h wakefulness) in the rat brain and periphery.

Methods: Four groups of 10 rats were investigated: Sedentary control, Sedentary sleep-deprived, Exercised control, and Exercised sleep-deprived. Sleep deprivation and exercise training were induced using slowly rotating wheels and a motorized treadmill. We examined mRNA expression of pro-inflammatory (IL-1β, TNF-α, and IL-6) cytokine-related genes using real-time PCR, and protein levels in the hippocampus and frontal cortex, as well as circulating concentrations.

Results: Compared to Sedentary control rats, hippocampal and cortical IL-1β mRNA expressions in Sedentary sleep-deprived rats were up-regulated (p < 0.05 and p < 0.01 respectively). At the protein level, hippocampal IL-1β and TNF-α and cortical IL-6 contents were higher in Sedentary sleep-deprived rats (p < 0.001, p < 0.05, p < 0.05, respectively). Peripherally, TNF-α, IL-6 and norepinephrine concentrations were higher in Sedentary sleep-deprived rats compared to Sedentary control (p < 0.01, p < 0.001, p < 0.01, respectively). Exercise training reduced the sleep deprivation-induced hippocampal IL-1β increases (mRNA expression and protein content) (p < 0.05 and p < 0.001), and TNF-α content (p < 0.001). At the periphery, exercise reduced sleep deprivation-induced increase of IL-6 concentration (p < 0.05) without effect on TNF-α and norepinephrine.

Conclusions: We demonstrate that a 7-week exercise training program before acute total sleep deprivation prevents pro-inflammatory responses in the rat hippocampus, particularly the IL-1β cytokine at the gene expression level and protein content.

No MeSH data available.


Related in: MedlinePlus