Limits...
Anthelmintic activity of trans-cinnamaldehyde and A- and B-type proanthocyanidins derived from cinnamon (Cinnamomum verum).

Williams AR, Ramsay A, Hansen TV, Ropiak HM, Mejer H, Nejsum P, Mueller-Harvey I, Thamsborg SM - Sci Rep (2015)

Bottom Line: Cinnamon (Cinnamomum verum) has been shown to have anti-inflammatory and antimicrobial properties, but effects on parasitic worms of the intestine have not been investigated.It is proposed that the rapid absorption or metabolism of CA in vivo may prevent it from being present in sufficient concentrations in situ to exert efficacy.Therefore, further work should focus on whether formulation of CA can enhance its activity against internal parasites.

View Article: PubMed Central - PubMed

Affiliation: Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.

ABSTRACT
Cinnamon (Cinnamomum verum) has been shown to have anti-inflammatory and antimicrobial properties, but effects on parasitic worms of the intestine have not been investigated. Here, extracts of cinnamon bark were shown to have potent in vitro anthelmintic properties against the swine nematode Ascaris suum. Analysis of the extract revealed high concentrations of proanthocyanidins (PAC) and trans-cinnamaldehyde (CA). The PAC were subjected to thiolysis and HPLC-MS analysis which demonstrated that they were exclusively procyanidins, had a mean degree of polymerization of 5.2 and 21% of their inter-flavan-3-ol links were A-type linkages. Purification of the PAC revealed that whilst they had activity against A. suum, most of the potency of the extract derived from CA. Trichuris suis and Oesophagostomum dentatum larvae were similarly susceptible to CA. To test whether CA could reduce A. suum infection in pigs in vivo, CA was administered daily in the diet or as a targeted, encapsulated dose. However, infection was not significantly reduced. It is proposed that the rapid absorption or metabolism of CA in vivo may prevent it from being present in sufficient concentrations in situ to exert efficacy. Therefore, further work should focus on whether formulation of CA can enhance its activity against internal parasites.

No MeSH data available.


Related in: MedlinePlus

Total Ascaris suum larval burdens and distribution of larvae in the intestine of pigs administered trans-cinnamaldehyde.(a) Numbers of fourth-stage larvae (L4) in the small intestine (SI) at day 14 post-infection (p.i.) in pigs fed either trans-cinnamaldehyde (CA) in the diet daily (‘CA diet’), dosed with encapsulated CA at days 11 and 13 p.i. (‘CA capsules’), or not administered CA (‘Control’). Indicated is the mean and SEM. (b) Proportions of L4 recovered from the three groups in Segment 1 (proximal half of the SI), Segment 2 (third quarter of the SI) and Segment 3 (distal quarter of the SI). See materials and methods for further information.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4588565&req=5

f7: Total Ascaris suum larval burdens and distribution of larvae in the intestine of pigs administered trans-cinnamaldehyde.(a) Numbers of fourth-stage larvae (L4) in the small intestine (SI) at day 14 post-infection (p.i.) in pigs fed either trans-cinnamaldehyde (CA) in the diet daily (‘CA diet’), dosed with encapsulated CA at days 11 and 13 p.i. (‘CA capsules’), or not administered CA (‘Control’). Indicated is the mean and SEM. (b) Proportions of L4 recovered from the three groups in Segment 1 (proximal half of the SI), Segment 2 (third quarter of the SI) and Segment 3 (distal quarter of the SI). See materials and methods for further information.

Mentions: Given that CA appeared to be the most active compound in the cinnamon extract, we proceeded to test whether pure CA could reduce infection with A. suum in pigs in vivo. Two different approaches were taken to administer CA; as a daily dietary supplement or as a targeted therapeutic dose in encapsulated form, as this latter approach may be 1) more suitable to deliver a concentrated dose of the active compound to the site of infection (the small intestine for A. suum), and 2) may be more applicable to human populations where a therapeutic dose needs to be applied rather than a preventative dietary approach. Thus, three groups of pigs were used. The first group remained untreated as a control. A second group of pigs was fed a daily supplement of 1000 mg CA, as this dose has been shown to be safe and acceptable to pigs, as well as resulting in decreased Escherichia coli excretion31. Five days after the supplemental feeding began, all three groups of pigs were infected orally with 5000 embryonated A. suum eggs. The third group was then orally dosed with 1000 mg of CA, placed in acid-resistant capsules, on two occasions, 11 and 13 days post-infection. At 14 days post-infection, all pigs were killed and larval burdens were enumerated. Pigs that received the CA capsules had a mean larval burden of 2386, compared to 3114 and 2991 in those that received the dietary CA or no treatment, respectively. However, there were no significant differences (Fig. 7A; P = 0.28 by one-way ANOVA). We also assessed the location of larvae within the small intestine, to determine if CA treatment resulted in a more posterior location of larvae. The majority of larvae (~80%) were found in the third quarter of the SI in all pigs. Pigs dosed with CA capsules had more larvae located in the fourth (most posterior) quarter (20%) compared to the control (10%) or those fed CA in the diet (15%), however these differences were also not significant (Fig. 7B; P = 0.3 by one-way ANOVA). Therefore, despite its potent in vitro activity, CA failed to have an in vivo effect in this model of A. suum infection.


Anthelmintic activity of trans-cinnamaldehyde and A- and B-type proanthocyanidins derived from cinnamon (Cinnamomum verum).

Williams AR, Ramsay A, Hansen TV, Ropiak HM, Mejer H, Nejsum P, Mueller-Harvey I, Thamsborg SM - Sci Rep (2015)

Total Ascaris suum larval burdens and distribution of larvae in the intestine of pigs administered trans-cinnamaldehyde.(a) Numbers of fourth-stage larvae (L4) in the small intestine (SI) at day 14 post-infection (p.i.) in pigs fed either trans-cinnamaldehyde (CA) in the diet daily (‘CA diet’), dosed with encapsulated CA at days 11 and 13 p.i. (‘CA capsules’), or not administered CA (‘Control’). Indicated is the mean and SEM. (b) Proportions of L4 recovered from the three groups in Segment 1 (proximal half of the SI), Segment 2 (third quarter of the SI) and Segment 3 (distal quarter of the SI). See materials and methods for further information.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4588565&req=5

f7: Total Ascaris suum larval burdens and distribution of larvae in the intestine of pigs administered trans-cinnamaldehyde.(a) Numbers of fourth-stage larvae (L4) in the small intestine (SI) at day 14 post-infection (p.i.) in pigs fed either trans-cinnamaldehyde (CA) in the diet daily (‘CA diet’), dosed with encapsulated CA at days 11 and 13 p.i. (‘CA capsules’), or not administered CA (‘Control’). Indicated is the mean and SEM. (b) Proportions of L4 recovered from the three groups in Segment 1 (proximal half of the SI), Segment 2 (third quarter of the SI) and Segment 3 (distal quarter of the SI). See materials and methods for further information.
Mentions: Given that CA appeared to be the most active compound in the cinnamon extract, we proceeded to test whether pure CA could reduce infection with A. suum in pigs in vivo. Two different approaches were taken to administer CA; as a daily dietary supplement or as a targeted therapeutic dose in encapsulated form, as this latter approach may be 1) more suitable to deliver a concentrated dose of the active compound to the site of infection (the small intestine for A. suum), and 2) may be more applicable to human populations where a therapeutic dose needs to be applied rather than a preventative dietary approach. Thus, three groups of pigs were used. The first group remained untreated as a control. A second group of pigs was fed a daily supplement of 1000 mg CA, as this dose has been shown to be safe and acceptable to pigs, as well as resulting in decreased Escherichia coli excretion31. Five days after the supplemental feeding began, all three groups of pigs were infected orally with 5000 embryonated A. suum eggs. The third group was then orally dosed with 1000 mg of CA, placed in acid-resistant capsules, on two occasions, 11 and 13 days post-infection. At 14 days post-infection, all pigs were killed and larval burdens were enumerated. Pigs that received the CA capsules had a mean larval burden of 2386, compared to 3114 and 2991 in those that received the dietary CA or no treatment, respectively. However, there were no significant differences (Fig. 7A; P = 0.28 by one-way ANOVA). We also assessed the location of larvae within the small intestine, to determine if CA treatment resulted in a more posterior location of larvae. The majority of larvae (~80%) were found in the third quarter of the SI in all pigs. Pigs dosed with CA capsules had more larvae located in the fourth (most posterior) quarter (20%) compared to the control (10%) or those fed CA in the diet (15%), however these differences were also not significant (Fig. 7B; P = 0.3 by one-way ANOVA). Therefore, despite its potent in vitro activity, CA failed to have an in vivo effect in this model of A. suum infection.

Bottom Line: Cinnamon (Cinnamomum verum) has been shown to have anti-inflammatory and antimicrobial properties, but effects on parasitic worms of the intestine have not been investigated.It is proposed that the rapid absorption or metabolism of CA in vivo may prevent it from being present in sufficient concentrations in situ to exert efficacy.Therefore, further work should focus on whether formulation of CA can enhance its activity against internal parasites.

View Article: PubMed Central - PubMed

Affiliation: Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.

ABSTRACT
Cinnamon (Cinnamomum verum) has been shown to have anti-inflammatory and antimicrobial properties, but effects on parasitic worms of the intestine have not been investigated. Here, extracts of cinnamon bark were shown to have potent in vitro anthelmintic properties against the swine nematode Ascaris suum. Analysis of the extract revealed high concentrations of proanthocyanidins (PAC) and trans-cinnamaldehyde (CA). The PAC were subjected to thiolysis and HPLC-MS analysis which demonstrated that they were exclusively procyanidins, had a mean degree of polymerization of 5.2 and 21% of their inter-flavan-3-ol links were A-type linkages. Purification of the PAC revealed that whilst they had activity against A. suum, most of the potency of the extract derived from CA. Trichuris suis and Oesophagostomum dentatum larvae were similarly susceptible to CA. To test whether CA could reduce A. suum infection in pigs in vivo, CA was administered daily in the diet or as a targeted, encapsulated dose. However, infection was not significantly reduced. It is proposed that the rapid absorption or metabolism of CA in vivo may prevent it from being present in sufficient concentrations in situ to exert efficacy. Therefore, further work should focus on whether formulation of CA can enhance its activity against internal parasites.

No MeSH data available.


Related in: MedlinePlus