Limits...
Antioxidant and anti hyperglycemic role of wine grape powder in rats fed with a high fructose diet.

Hernández-Salinas R, Decap V, Leguina A, Cáceres P, Perez D, Urquiaga I, Iturriaga R, Velarde V - Biol. Res. (2015)

Bottom Line: Thiobarbituric acid reactive substances in plasma and renal tissue were significantly higher when compared to the control group.We did not find any significant difference in body weight or systolic blood pressure in any of the groups.Our results show that WGP supplementation prevented hyperglycemia, insulin resistance and reduced oxidative stress in rats fed with HF diet.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. romina.hernandez.salinas@gmail.com.

ABSTRACT

Background: Metabolic syndrome is a growing worldwide health problem. We evaluated the effects of wine grape powder (WGP), rich in antioxidants and fiber, in a rat model of metabolic syndrome induced by a high fructose diet. We tested whether WGP supplementation may prevent glucose intolerance and decrease oxidative stress in rats fed with a high fructose diet.

Methods: Male Sprague-Dawley rats weighing 180 g were divided into four groups according to their feeding protocols. Rats were fed with control diet (C), control plus 20 % WGP (C + WGP), 50 % high fructose (HF) or 50 % fructose plus 20 % WGP (HF + WGP) for 16 weeks. Blood glucose, insulin and triglycerides, weight, and arterial blood pressure were measured. Homeostasis model assessment (HOMA) index was calculated using insulin and glucose values. A glucose tolerance test was performed 2 days before the end of the experiment. As an index of oxidative stress, thiobarbituric acid reactive substances (TBARS) level was measured in plasma and kidney, and superoxide dismutase was measured in the kidney.

Results: Thiobarbituric acid reactive substances in plasma and renal tissue were significantly higher when compared to the control group. In addition, the area under the curve of the glucose tolerance test was higher in HF fed animals. Furthermore, fasting blood glucose, plasma insulin levels, and the HOMA index, were also increased. WGP supplementation prevented these alterations in rats fed with the HF diet. We did not find any significant difference in body weight or systolic blood pressure in any of the groups.

Conclusions: Our results show that WGP supplementation prevented hyperglycemia, insulin resistance and reduced oxidative stress in rats fed with HF diet. We propose that WGP may be used as a supplement in human food as well.

No MeSH data available.


Related in: MedlinePlus

Arterial blood pressure measured by radiotelemetry in three conscious rats fed with control (C filled circle), high fructose (HF filled square) and high fructose + WGP (HF + WGP unfilled square) diets. Systolic and diastolic arterial blood pressure of the rats was displayed in the upper and lower part of the figure, respectively. Telemeters were implanted into the femoral artery and the recordings started 7 days after the surgery. Arrow indicate the beginning of the diet treatments
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4588460&req=5

Fig1: Arterial blood pressure measured by radiotelemetry in three conscious rats fed with control (C filled circle), high fructose (HF filled square) and high fructose + WGP (HF + WGP unfilled square) diets. Systolic and diastolic arterial blood pressure of the rats was displayed in the upper and lower part of the figure, respectively. Telemeters were implanted into the femoral artery and the recordings started 7 days after the surgery. Arrow indicate the beginning of the diet treatments

Mentions: High fructose diet increased glucose, triglycerides and insulin levels in plasma measured after 12 h of food deprivation, but did not induce changes in systolic arterial pressure, body or heart weight (Table 3). Supplementation with WGP to the HF diet reduced the increase in glucose, triglycerides and insulin levels in plasma. In a separate experimental series, we recorded systolic and diastolic arterial pressure with radiotelemetry in three rats fed with control, high fructose and high fructose plus WGP. Arterial blood pressure slightly increased during the experiment in all groups. However a similar trend in the increase of arterial blood pressure was observed in all three rats (Fig. 1).Table 3


Antioxidant and anti hyperglycemic role of wine grape powder in rats fed with a high fructose diet.

Hernández-Salinas R, Decap V, Leguina A, Cáceres P, Perez D, Urquiaga I, Iturriaga R, Velarde V - Biol. Res. (2015)

Arterial blood pressure measured by radiotelemetry in three conscious rats fed with control (C filled circle), high fructose (HF filled square) and high fructose + WGP (HF + WGP unfilled square) diets. Systolic and diastolic arterial blood pressure of the rats was displayed in the upper and lower part of the figure, respectively. Telemeters were implanted into the femoral artery and the recordings started 7 days after the surgery. Arrow indicate the beginning of the diet treatments
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4588460&req=5

Fig1: Arterial blood pressure measured by radiotelemetry in three conscious rats fed with control (C filled circle), high fructose (HF filled square) and high fructose + WGP (HF + WGP unfilled square) diets. Systolic and diastolic arterial blood pressure of the rats was displayed in the upper and lower part of the figure, respectively. Telemeters were implanted into the femoral artery and the recordings started 7 days after the surgery. Arrow indicate the beginning of the diet treatments
Mentions: High fructose diet increased glucose, triglycerides and insulin levels in plasma measured after 12 h of food deprivation, but did not induce changes in systolic arterial pressure, body or heart weight (Table 3). Supplementation with WGP to the HF diet reduced the increase in glucose, triglycerides and insulin levels in plasma. In a separate experimental series, we recorded systolic and diastolic arterial pressure with radiotelemetry in three rats fed with control, high fructose and high fructose plus WGP. Arterial blood pressure slightly increased during the experiment in all groups. However a similar trend in the increase of arterial blood pressure was observed in all three rats (Fig. 1).Table 3

Bottom Line: Thiobarbituric acid reactive substances in plasma and renal tissue were significantly higher when compared to the control group.We did not find any significant difference in body weight or systolic blood pressure in any of the groups.Our results show that WGP supplementation prevented hyperglycemia, insulin resistance and reduced oxidative stress in rats fed with HF diet.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. romina.hernandez.salinas@gmail.com.

ABSTRACT

Background: Metabolic syndrome is a growing worldwide health problem. We evaluated the effects of wine grape powder (WGP), rich in antioxidants and fiber, in a rat model of metabolic syndrome induced by a high fructose diet. We tested whether WGP supplementation may prevent glucose intolerance and decrease oxidative stress in rats fed with a high fructose diet.

Methods: Male Sprague-Dawley rats weighing 180 g were divided into four groups according to their feeding protocols. Rats were fed with control diet (C), control plus 20 % WGP (C + WGP), 50 % high fructose (HF) or 50 % fructose plus 20 % WGP (HF + WGP) for 16 weeks. Blood glucose, insulin and triglycerides, weight, and arterial blood pressure were measured. Homeostasis model assessment (HOMA) index was calculated using insulin and glucose values. A glucose tolerance test was performed 2 days before the end of the experiment. As an index of oxidative stress, thiobarbituric acid reactive substances (TBARS) level was measured in plasma and kidney, and superoxide dismutase was measured in the kidney.

Results: Thiobarbituric acid reactive substances in plasma and renal tissue were significantly higher when compared to the control group. In addition, the area under the curve of the glucose tolerance test was higher in HF fed animals. Furthermore, fasting blood glucose, plasma insulin levels, and the HOMA index, were also increased. WGP supplementation prevented these alterations in rats fed with the HF diet. We did not find any significant difference in body weight or systolic blood pressure in any of the groups.

Conclusions: Our results show that WGP supplementation prevented hyperglycemia, insulin resistance and reduced oxidative stress in rats fed with HF diet. We propose that WGP may be used as a supplement in human food as well.

No MeSH data available.


Related in: MedlinePlus