Limits...
Middle East Respiratory Syndrome Coronavirus Outbreak in the Republic of Korea, 2015.

- Osong Public Health Res Perspect (2015)

Bottom Line: Older age [odds ratio (OR) = 4.86, 95% confidence interval (CI) 1.90-12.45] and underlying respiratory disease (OR = 4.90, 95% CI 1.64-14.65) were significantly associated with mortality.Phylogenetic analysis showed that the MERS-CoV of the index case clustered closest with a recent virus from Riyadh, Saudi Arabia.The lessons learned from the current outbreak will contribute to more up-to-date guidelines and global health security.

View Article: PubMed Central - PubMed

ABSTRACT

Objectives: The outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the Republic of Korea started from the index case who developed fever after returning from the Middle East. He infected 26 cases in Hospital C, and consecutive nosocomial transmission proceeded throughout the nation. We provide an epidemiologic description of the outbreak, as of July 2015.

Methods: Epidemiological research was performed by direct interview of the confirmed patients and reviewing medical records. We also analyzed the incubation period, serial interval, the characteristics of superspreaders, and factors associated with mortality. Full genome sequence was obtained from sputum specimens of the index patient.

Results: A total of 186 confirmed patients with MERS-CoV infection across 16 hospitals were identified in the Republic of Korea. Some 44.1% of the cases were patients exposed in hospitals, 32.8% were caregivers, and 13.4% were healthcare personnel. The most common presenting symptom was fever and chills. The estimated incubation period was 6.83 days and the serial interval was 12.5 days. A total of 83.2% of the transmission events were epidemiologically linked to five superspreaders, all of whom had pneumonia at presentation and contacted hundreds of people. Older age [odds ratio (OR) = 4.86, 95% confidence interval (CI) 1.90-12.45] and underlying respiratory disease (OR = 4.90, 95% CI 1.64-14.65) were significantly associated with mortality. Phylogenetic analysis showed that the MERS-CoV of the index case clustered closest with a recent virus from Riyadh, Saudi Arabia.

Conclusion: A single imported MERS-CoV infection case imposed a huge threat to public health and safety. This highlights the importance of robust preparedness and optimal infection prevention control. The lessons learned from the current outbreak will contribute to more up-to-date guidelines and global health security.

No MeSH data available.


Related in: MedlinePlus

Transmission map of 182 confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the Republic of Korea. The numbers within the red circles are identifiers of notable patients who caused succeeding MERS-CoV infection. The site and the duration of exposure by these patients are indicated in colored boxes. Gray boxes depict the time periods that new cases occurred by date of symptom onset at each site. Black arrows represent how each spreader moved to the next site of transmission. The transmission route of Patient 119 is uncertain. Four cases still under investigation are excluded.
© Copyright Policy - CC BY-NC-ND
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4588443&req=5

fig4: Transmission map of 182 confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the Republic of Korea. The numbers within the red circles are identifiers of notable patients who caused succeeding MERS-CoV infection. The site and the duration of exposure by these patients are indicated in colored boxes. Gray boxes depict the time periods that new cases occurred by date of symptom onset at each site. Black arrows represent how each spreader moved to the next site of transmission. The transmission route of Patient 119 is uncertain. Four cases still under investigation are excluded.

Mentions: From May 15 through May 17, the index patient infected 26 secondary cases in Hospital C (Figure 4). An initial epidemiological investigation focused on the healthcare personnel, family members, and the patients who either had prolonged close contact or shared the same hospital room with the index patient. On May 28, as MERS-CoV infection was diagnosed among patients in other rooms, investigation was extended to those who stayed in the same ward. However, eight secondary patients who had not been detected already moved to another ward and infected 10 tertiary patients. Some of the patients had been discharged before May 28. Active surveillance was performed to trace these patients and we were able to find tertiary transmission across seven different hospitals. Patient 14 infected 80 tertiary cases in Hospital H, Patient 15 infected six tertiary cases in Hospital L, and Patient 16 infected 24 tertiary cases in Hospitals M and N, respectively. After the implementation of infection control interventions, a small number of quaternary transmissions occurred, and nearly half of these cases were caused by Patient 76 who was infected in Hospital H.


Middle East Respiratory Syndrome Coronavirus Outbreak in the Republic of Korea, 2015.

- Osong Public Health Res Perspect (2015)

Transmission map of 182 confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the Republic of Korea. The numbers within the red circles are identifiers of notable patients who caused succeeding MERS-CoV infection. The site and the duration of exposure by these patients are indicated in colored boxes. Gray boxes depict the time periods that new cases occurred by date of symptom onset at each site. Black arrows represent how each spreader moved to the next site of transmission. The transmission route of Patient 119 is uncertain. Four cases still under investigation are excluded.
© Copyright Policy - CC BY-NC-ND
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4588443&req=5

fig4: Transmission map of 182 confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the Republic of Korea. The numbers within the red circles are identifiers of notable patients who caused succeeding MERS-CoV infection. The site and the duration of exposure by these patients are indicated in colored boxes. Gray boxes depict the time periods that new cases occurred by date of symptom onset at each site. Black arrows represent how each spreader moved to the next site of transmission. The transmission route of Patient 119 is uncertain. Four cases still under investigation are excluded.
Mentions: From May 15 through May 17, the index patient infected 26 secondary cases in Hospital C (Figure 4). An initial epidemiological investigation focused on the healthcare personnel, family members, and the patients who either had prolonged close contact or shared the same hospital room with the index patient. On May 28, as MERS-CoV infection was diagnosed among patients in other rooms, investigation was extended to those who stayed in the same ward. However, eight secondary patients who had not been detected already moved to another ward and infected 10 tertiary patients. Some of the patients had been discharged before May 28. Active surveillance was performed to trace these patients and we were able to find tertiary transmission across seven different hospitals. Patient 14 infected 80 tertiary cases in Hospital H, Patient 15 infected six tertiary cases in Hospital L, and Patient 16 infected 24 tertiary cases in Hospitals M and N, respectively. After the implementation of infection control interventions, a small number of quaternary transmissions occurred, and nearly half of these cases were caused by Patient 76 who was infected in Hospital H.

Bottom Line: Older age [odds ratio (OR) = 4.86, 95% confidence interval (CI) 1.90-12.45] and underlying respiratory disease (OR = 4.90, 95% CI 1.64-14.65) were significantly associated with mortality.Phylogenetic analysis showed that the MERS-CoV of the index case clustered closest with a recent virus from Riyadh, Saudi Arabia.The lessons learned from the current outbreak will contribute to more up-to-date guidelines and global health security.

View Article: PubMed Central - PubMed

ABSTRACT

Objectives: The outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the Republic of Korea started from the index case who developed fever after returning from the Middle East. He infected 26 cases in Hospital C, and consecutive nosocomial transmission proceeded throughout the nation. We provide an epidemiologic description of the outbreak, as of July 2015.

Methods: Epidemiological research was performed by direct interview of the confirmed patients and reviewing medical records. We also analyzed the incubation period, serial interval, the characteristics of superspreaders, and factors associated with mortality. Full genome sequence was obtained from sputum specimens of the index patient.

Results: A total of 186 confirmed patients with MERS-CoV infection across 16 hospitals were identified in the Republic of Korea. Some 44.1% of the cases were patients exposed in hospitals, 32.8% were caregivers, and 13.4% were healthcare personnel. The most common presenting symptom was fever and chills. The estimated incubation period was 6.83 days and the serial interval was 12.5 days. A total of 83.2% of the transmission events were epidemiologically linked to five superspreaders, all of whom had pneumonia at presentation and contacted hundreds of people. Older age [odds ratio (OR) = 4.86, 95% confidence interval (CI) 1.90-12.45] and underlying respiratory disease (OR = 4.90, 95% CI 1.64-14.65) were significantly associated with mortality. Phylogenetic analysis showed that the MERS-CoV of the index case clustered closest with a recent virus from Riyadh, Saudi Arabia.

Conclusion: A single imported MERS-CoV infection case imposed a huge threat to public health and safety. This highlights the importance of robust preparedness and optimal infection prevention control. The lessons learned from the current outbreak will contribute to more up-to-date guidelines and global health security.

No MeSH data available.


Related in: MedlinePlus