Limits...
Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting.

Torres-Climent A, Gomis P, Martín-Mata J, Bustamante MA, Marhuenda-Egea FC, Pérez-Murcia MD, Pérez-Espinosa A, Paredes C, Moral R - PLoS ONE (2015)

Bottom Line: For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure).The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials.However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials.

View Article: PubMed Central - PubMed

Affiliation: Department of Agrochemistry and Environment, Miguel Hernandez University, Orihuela, Alicante, Spain.

ABSTRACT
The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio.

No MeSH data available.


Related in: MedlinePlus

Temperature profiles of the composting piles.Pile A [76% exhausted grape marc + 24% cattle manure]; pile B [72% grape marc + 28% cattle manure]; and pile C [67% exhausted grape marc + 33% poultry manure].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4587889&req=5

pone.0138925.g001: Temperature profiles of the composting piles.Pile A [76% exhausted grape marc + 24% cattle manure]; pile B [72% grape marc + 28% cattle manure]; and pile C [67% exhausted grape marc + 33% poultry manure].

Mentions: The temperature profile in the composting process determines the rate at which many of the biological reactions take place, being a signalling parameter about nutrient bioavailability and the presence of potential limiting factors (salinity, polyphenols, etc.); also, it is associated to the capacity of the process to reduce the pathogen contents [8]. At the beginning of the process, the temperature increased very slowly in all the mixtures except for pile B (Fig 1), probably as a consequence of its higher contents in water-soluble easy-degradable compounds (Table 2), due to the use of GM, with greater amounts of these compounds than EGM [2]. The initial inhibition of the thermophilic phase during composting of winery and distillery wastes has been reported by other authors [7, 10, 29]. The presence of compounds with antimicrobial effect, such as polyphenols, and the acidic character of this type of wastes could be responsible for this temperature profile [10, 29, 30]. The use of the manures as co-composting ingredients, in general, induced better conditions in the initial composting mixtures, reducing some of the limiting factors linked to winery-distillery wastes, such as the acidic character, since the pH of the initial mixtures (pH = 7.9 for pile A; pH = 7.1 for piles B and C) (S1 Table) was in the range 6–8, suggested as suitable for composting [8]. However, in pile C, the use of PM seemed not to have the same positive effect, showing this pile the lowest thermophilic temperature values at the beginning of the process. This initial inhibition could be due to the higher concentrations of polyphenolic compounds of this waste (Table 1), which induced the highest contents of these compounds in the initial mixture of pile C (2568 mg/kg for pile C compared to 1125 mg/kg for pile A and 1446 mg/kg for pile B) (S1 Table). The turnings carried out throughout composting, especially the second one, reactivated the process in all the mixtures by the increase in the microbial activity, producing the maximum temperature rise in all the composting mixtures. This reactivation of the composting process with turnings was also reported by Bustamante et al. [29] during an experiment of composting of anaerobic digestate using different bulking agents. According to the EXothermic Index, EXI (calculated as the summation of the daily value obtained by subtracting the ambient temperature from the temperature value in the composting pile during the bio-oxidative phase of composting, and expressed as cumulated°C), pile B had the most exothermic behavior (1741 cumulated°C), while piles A and C were quite similar (1344 and 1317, respectively), probably due to the previously commented different content in labile compounds in GM and EGM, the last one obtained after grape marc-washing processes carried out in the distillery.


Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting.

Torres-Climent A, Gomis P, Martín-Mata J, Bustamante MA, Marhuenda-Egea FC, Pérez-Murcia MD, Pérez-Espinosa A, Paredes C, Moral R - PLoS ONE (2015)

Temperature profiles of the composting piles.Pile A [76% exhausted grape marc + 24% cattle manure]; pile B [72% grape marc + 28% cattle manure]; and pile C [67% exhausted grape marc + 33% poultry manure].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4587889&req=5

pone.0138925.g001: Temperature profiles of the composting piles.Pile A [76% exhausted grape marc + 24% cattle manure]; pile B [72% grape marc + 28% cattle manure]; and pile C [67% exhausted grape marc + 33% poultry manure].
Mentions: The temperature profile in the composting process determines the rate at which many of the biological reactions take place, being a signalling parameter about nutrient bioavailability and the presence of potential limiting factors (salinity, polyphenols, etc.); also, it is associated to the capacity of the process to reduce the pathogen contents [8]. At the beginning of the process, the temperature increased very slowly in all the mixtures except for pile B (Fig 1), probably as a consequence of its higher contents in water-soluble easy-degradable compounds (Table 2), due to the use of GM, with greater amounts of these compounds than EGM [2]. The initial inhibition of the thermophilic phase during composting of winery and distillery wastes has been reported by other authors [7, 10, 29]. The presence of compounds with antimicrobial effect, such as polyphenols, and the acidic character of this type of wastes could be responsible for this temperature profile [10, 29, 30]. The use of the manures as co-composting ingredients, in general, induced better conditions in the initial composting mixtures, reducing some of the limiting factors linked to winery-distillery wastes, such as the acidic character, since the pH of the initial mixtures (pH = 7.9 for pile A; pH = 7.1 for piles B and C) (S1 Table) was in the range 6–8, suggested as suitable for composting [8]. However, in pile C, the use of PM seemed not to have the same positive effect, showing this pile the lowest thermophilic temperature values at the beginning of the process. This initial inhibition could be due to the higher concentrations of polyphenolic compounds of this waste (Table 1), which induced the highest contents of these compounds in the initial mixture of pile C (2568 mg/kg for pile C compared to 1125 mg/kg for pile A and 1446 mg/kg for pile B) (S1 Table). The turnings carried out throughout composting, especially the second one, reactivated the process in all the mixtures by the increase in the microbial activity, producing the maximum temperature rise in all the composting mixtures. This reactivation of the composting process with turnings was also reported by Bustamante et al. [29] during an experiment of composting of anaerobic digestate using different bulking agents. According to the EXothermic Index, EXI (calculated as the summation of the daily value obtained by subtracting the ambient temperature from the temperature value in the composting pile during the bio-oxidative phase of composting, and expressed as cumulated°C), pile B had the most exothermic behavior (1741 cumulated°C), while piles A and C were quite similar (1344 and 1317, respectively), probably due to the previously commented different content in labile compounds in GM and EGM, the last one obtained after grape marc-washing processes carried out in the distillery.

Bottom Line: For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure).The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials.However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials.

View Article: PubMed Central - PubMed

Affiliation: Department of Agrochemistry and Environment, Miguel Hernandez University, Orihuela, Alicante, Spain.

ABSTRACT
The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio.

No MeSH data available.


Related in: MedlinePlus