Limits...
BOLD Response Selective to Flow-Motion in Very Young Infants.

Biagi L, Crespi SA, Tosetti M, Morrone MC - PLoS Biol. (2015)

Bottom Line: Resting-state correlations demonstrate adult-like functional connectivity between the motion-selective associative areas, but not between primary cortex and temporo-occipital and posterior-insular cortices.Taken together, the results suggest that the development of motion perception may be limited by slow maturation of the subcortical input and of the cortico-cortical connections.In addition they support the existence of independent input to primary (V1) and temporo-occipital (V5/MT+) cortices very early in life.

View Article: PubMed Central - PubMed

Affiliation: IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy.

ABSTRACT
In adults, motion perception is mediated by an extensive network of occipital, parietal, temporal, and insular cortical areas. Little is known about the neural substrate of visual motion in infants, although behavioural studies suggest that motion perception is rudimentary at birth and matures steadily over the first few years. Here, by measuring Blood Oxygenated Level Dependent (BOLD) responses to flow versus random-motion stimuli, we demonstrate that the major cortical areas serving motion processing in adults are operative by 7 wk of age. Resting-state correlations demonstrate adult-like functional connectivity between the motion-selective associative areas, but not between primary cortex and temporo-occipital and posterior-insular cortices. Taken together, the results suggest that the development of motion perception may be limited by slow maturation of the subcortical input and of the cortico-cortical connections. In addition they support the existence of independent input to primary (V1) and temporo-occipital (V5/MT+) cortices very early in life.

No MeSH data available.


Related in: MedlinePlus

Multi-subject GLM analysis for coherent versus random flow motion stimuli.Results of a multi-subject fixed-effect general linear model (FFX-GLM) analysis for the BOLD response to coherent versus random flow motion performed on the group of 11 infants and registered on the infant brain template on left panels and on 9 adults in the right panels. Colour bar represents the statistical t-values, with thresholds corresponding to a q(FDR) < 0.05 in the top panels and to p < 0.05 uncorrected in the bottom panels. Numbers refer to the “ζ” coordinate of the transversal slice for the infants and to the Talairach z for the adults. R-L in radiological convention. (R: right; L: left; FDR: false discovery rate.) Data of the statistical maps are available in S2 Data.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4587790&req=5

pbio.1002260.g004: Multi-subject GLM analysis for coherent versus random flow motion stimuli.Results of a multi-subject fixed-effect general linear model (FFX-GLM) analysis for the BOLD response to coherent versus random flow motion performed on the group of 11 infants and registered on the infant brain template on left panels and on 9 adults in the right panels. Colour bar represents the statistical t-values, with thresholds corresponding to a q(FDR) < 0.05 in the top panels and to p < 0.05 uncorrected in the bottom panels. Numbers refer to the “ζ” coordinate of the transversal slice for the infants and to the Talairach z for the adults. R-L in radiological convention. (R: right; L: left; FDR: false discovery rate.) Data of the statistical maps are available in S2 Data.

Mentions: The flow-selective area in the Cuneus/Pre-Cuneus was labelled in only seven infants, while it was always present in all except one adult; in another subject, the V6 and PIVC/PIC ROIs were not significant at α = 0.05. To assess the congruency of ROI localization, we built an anatomical template by brain segmentation using dedicated tissue probability maps (illustrated in S4 Fig) and we performed a fixed-effect GLM multi-subject analysis (see Methods). Fig 4 (top panels) shows the results mapped on the same anatomical template of S4 Fig for infants and in Talairach atlas for adults, at the same statistical threshold of q < 0.05 (false discovery rate [FDR] corrected and without mask). In adults, the occipital foci associated both with dorsal and with ventral pathways [53,54] showed a stronger response to coherent motion, with the exception of V1/V2 areas. A negative response was also labelled in the posterior insular cortex of the left hemisphere (slice at z = 8), while the right PIVC/PIC became labelled lowering the threshold at p < 0.05 (lower panels). This result is consistent both with the large variation in phase of the PIVC/PIC responses (see Fig 3 and S3 Fig) and with the large variation in the localization between subjects (see Table 1). The variation in phase was to be expected given that the BOLD amplitude of PIVC/PIC is modulated by the strength in vection perception [39–43]: subjects with stronger vection illusion might show stronger negative responses. Similarly, also the large scatter in position of the PIVC/PIC region has been already reported [43]. Both factors indicate that the multi-subject GLM may not be the most suitable technique to locate this area. Nevertheless it is reassuring that when decreasing the threshold to p < 0.05 (bottom panels) only one clear additional cluster in the posterior insular cortex became labelled, reinforcing the suggestion that PIVC/PIC localization can vary considerably across subjects. In infant multi-subject GLM, no activity was significantly labelled for V1/V2; all the ventral areas along the fusiform and the lingual gyri had negative responses, while the adult responses were positive, indicating a late development of direction selectivity for the ventral pathways. In contrast, the dorsal areas, like V3/V3A, LO, TOS, V6/V6A, and MT+, were clearly labelled, and showed a preference for the coherent flow motion. In the right hemisphere (slice at ζ = 16) a negative response corresponding to the location of the PIVC/PIC was labelled. As in adults, decreasing the threshold at p < 0.05 (bottom panels) also the PIVC/PIC in the left hemisphere became detectable, suggesting that, as in adults, for infants, the localization variability of this area is high. There were also other negative and positive clusters in the temporal lobe (see for example slice at ζ = 0) that can be also observed in adults, but whose function and circuitry are still unknown. The similarity in the localization pattern between infants and adults strongly suggests that the development of visual primary and dorsal associative cortex for motion processing is quite well advanced by 7 wk of age.


BOLD Response Selective to Flow-Motion in Very Young Infants.

Biagi L, Crespi SA, Tosetti M, Morrone MC - PLoS Biol. (2015)

Multi-subject GLM analysis for coherent versus random flow motion stimuli.Results of a multi-subject fixed-effect general linear model (FFX-GLM) analysis for the BOLD response to coherent versus random flow motion performed on the group of 11 infants and registered on the infant brain template on left panels and on 9 adults in the right panels. Colour bar represents the statistical t-values, with thresholds corresponding to a q(FDR) < 0.05 in the top panels and to p < 0.05 uncorrected in the bottom panels. Numbers refer to the “ζ” coordinate of the transversal slice for the infants and to the Talairach z for the adults. R-L in radiological convention. (R: right; L: left; FDR: false discovery rate.) Data of the statistical maps are available in S2 Data.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4587790&req=5

pbio.1002260.g004: Multi-subject GLM analysis for coherent versus random flow motion stimuli.Results of a multi-subject fixed-effect general linear model (FFX-GLM) analysis for the BOLD response to coherent versus random flow motion performed on the group of 11 infants and registered on the infant brain template on left panels and on 9 adults in the right panels. Colour bar represents the statistical t-values, with thresholds corresponding to a q(FDR) < 0.05 in the top panels and to p < 0.05 uncorrected in the bottom panels. Numbers refer to the “ζ” coordinate of the transversal slice for the infants and to the Talairach z for the adults. R-L in radiological convention. (R: right; L: left; FDR: false discovery rate.) Data of the statistical maps are available in S2 Data.
Mentions: The flow-selective area in the Cuneus/Pre-Cuneus was labelled in only seven infants, while it was always present in all except one adult; in another subject, the V6 and PIVC/PIC ROIs were not significant at α = 0.05. To assess the congruency of ROI localization, we built an anatomical template by brain segmentation using dedicated tissue probability maps (illustrated in S4 Fig) and we performed a fixed-effect GLM multi-subject analysis (see Methods). Fig 4 (top panels) shows the results mapped on the same anatomical template of S4 Fig for infants and in Talairach atlas for adults, at the same statistical threshold of q < 0.05 (false discovery rate [FDR] corrected and without mask). In adults, the occipital foci associated both with dorsal and with ventral pathways [53,54] showed a stronger response to coherent motion, with the exception of V1/V2 areas. A negative response was also labelled in the posterior insular cortex of the left hemisphere (slice at z = 8), while the right PIVC/PIC became labelled lowering the threshold at p < 0.05 (lower panels). This result is consistent both with the large variation in phase of the PIVC/PIC responses (see Fig 3 and S3 Fig) and with the large variation in the localization between subjects (see Table 1). The variation in phase was to be expected given that the BOLD amplitude of PIVC/PIC is modulated by the strength in vection perception [39–43]: subjects with stronger vection illusion might show stronger negative responses. Similarly, also the large scatter in position of the PIVC/PIC region has been already reported [43]. Both factors indicate that the multi-subject GLM may not be the most suitable technique to locate this area. Nevertheless it is reassuring that when decreasing the threshold to p < 0.05 (bottom panels) only one clear additional cluster in the posterior insular cortex became labelled, reinforcing the suggestion that PIVC/PIC localization can vary considerably across subjects. In infant multi-subject GLM, no activity was significantly labelled for V1/V2; all the ventral areas along the fusiform and the lingual gyri had negative responses, while the adult responses were positive, indicating a late development of direction selectivity for the ventral pathways. In contrast, the dorsal areas, like V3/V3A, LO, TOS, V6/V6A, and MT+, were clearly labelled, and showed a preference for the coherent flow motion. In the right hemisphere (slice at ζ = 16) a negative response corresponding to the location of the PIVC/PIC was labelled. As in adults, decreasing the threshold at p < 0.05 (bottom panels) also the PIVC/PIC in the left hemisphere became detectable, suggesting that, as in adults, for infants, the localization variability of this area is high. There were also other negative and positive clusters in the temporal lobe (see for example slice at ζ = 0) that can be also observed in adults, but whose function and circuitry are still unknown. The similarity in the localization pattern between infants and adults strongly suggests that the development of visual primary and dorsal associative cortex for motion processing is quite well advanced by 7 wk of age.

Bottom Line: Resting-state correlations demonstrate adult-like functional connectivity between the motion-selective associative areas, but not between primary cortex and temporo-occipital and posterior-insular cortices.Taken together, the results suggest that the development of motion perception may be limited by slow maturation of the subcortical input and of the cortico-cortical connections.In addition they support the existence of independent input to primary (V1) and temporo-occipital (V5/MT+) cortices very early in life.

View Article: PubMed Central - PubMed

Affiliation: IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy.

ABSTRACT
In adults, motion perception is mediated by an extensive network of occipital, parietal, temporal, and insular cortical areas. Little is known about the neural substrate of visual motion in infants, although behavioural studies suggest that motion perception is rudimentary at birth and matures steadily over the first few years. Here, by measuring Blood Oxygenated Level Dependent (BOLD) responses to flow versus random-motion stimuli, we demonstrate that the major cortical areas serving motion processing in adults are operative by 7 wk of age. Resting-state correlations demonstrate adult-like functional connectivity between the motion-selective associative areas, but not between primary cortex and temporo-occipital and posterior-insular cortices. Taken together, the results suggest that the development of motion perception may be limited by slow maturation of the subcortical input and of the cortico-cortical connections. In addition they support the existence of independent input to primary (V1) and temporo-occipital (V5/MT+) cortices very early in life.

No MeSH data available.


Related in: MedlinePlus