Limits...
IncF plasmid diversity in multi-drug resistant Escherichia coli strains from animals in China.

Yang QE, Sun J, Li L, Deng H, Liu BT, Fang LX, Liao XP, Liu YH - Front Microbiol (2015)

Bottom Line: This is the first extensive study of IncF plasmid-positive E. coli isolates from animals in China.Our results demonstrate that IncF is the most prevalent plasmid family in E. coli plasmids and they commonly carry multiple resistance determinants that render them resistant to different antibiotic classes simultaneously.IncF plasmids also harbor addiction systems, promoting their stability and maintenance in the bacterial host, under changing environmental conditions.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China.

ABSTRACT
The purpose of this study was to characterize a collection of 103 multidrug resistance IncF plasmids recovered from Escherichia coli of food producing and companion animals between 2003 and 2012. A total of 103 incF plasmids were characterized using an established PCR-based IncF replicon sequence typing (RST) system to identify FII, FIA, and FIB (FAB) groups. Plasmids were also analyzed using-restriction fragment length polymorphism (RFLP). Antibiotic Resistance determinants bla CTX-M , plasmid-mediated quinolone resistance (PMQR) genes and rmtB and plasmid addiction systems (PAS) were identified by PCR screening. A total of 20 different RSTs from 103 IncF plasmids were identified. The groups F2 and F33 with the RST formulae A-: B- were the most frequently encountered types (63.1%). The antibiotic resistance genes (ARGs) bla CTX-M , rmtB, and oqxB were carried by 82, 37, and 34 IncF plasmids, respectively. Most of these plasmids carried more than one resistance gene (59.2%, 61/103). The IncF plasmids also had a high frequency of addiction systems (mean 2.54) and two antisense RNA-regulated systems (hok-sok and srnBC) and a protein antitoxin-regulated system (pemKI) were the most prevalent. Not surprisingly, RFLP profiles among the IncF plasmids were diverse even though some shared identical IncF-RSTs. This is the first extensive study of IncF plasmid-positive E. coli isolates from animals in China. Our results demonstrate that IncF is the most prevalent plasmid family in E. coli plasmids and they commonly carry multiple resistance determinants that render them resistant to different antibiotic classes simultaneously. IncF plasmids also harbor addiction systems, promoting their stability and maintenance in the bacterial host, under changing environmental conditions.

No MeSH data available.


Related in: MedlinePlus

RFLP patterns and characterization of multi-resistance 27 F33: A-: B- plasmids. The scale on the top left of the figure indicates the percentage of similarity for the EcoRI restriction profiles of the IncF plasmids. aAntimicrobial for which the plasmids MICs fell within the resistant range; Antimicrobial abbreviations: A, ampicillin; S, streptomycin; M, amikacin; K, kanamycin; G, gentamycin; R, ceftriaxone; C, cefotaxime; CT, ceftiofur; N, nalidixic acid; P, ciprofloxacin; E, enrofloxacin; L, levoflox-acin; O, olaquindox; T, tetracycline; H, chloramphenicol and F, florfenicol. bPlasmids with a DSI ≥80% were assigned to the same cluster (designated with numbers 1, 2, 3, 4 etc.). Letters were used to discriminate RFLP patterns assigned to the same cluster, but differing by one or two restriction bands (i.e., 1a, 1b, 1c etc.). ND, not determined.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585273&req=5

Figure 3: RFLP patterns and characterization of multi-resistance 27 F33: A-: B- plasmids. The scale on the top left of the figure indicates the percentage of similarity for the EcoRI restriction profiles of the IncF plasmids. aAntimicrobial for which the plasmids MICs fell within the resistant range; Antimicrobial abbreviations: A, ampicillin; S, streptomycin; M, amikacin; K, kanamycin; G, gentamycin; R, ceftriaxone; C, cefotaxime; CT, ceftiofur; N, nalidixic acid; P, ciprofloxacin; E, enrofloxacin; L, levoflox-acin; O, olaquindox; T, tetracycline; H, chloramphenicol and F, florfenicol. bPlasmids with a DSI ≥80% were assigned to the same cluster (designated with numbers 1, 2, 3, 4 etc.). Letters were used to discriminate RFLP patterns assigned to the same cluster, but differing by one or two restriction bands (i.e., 1a, 1b, 1c etc.). ND, not determined.

Mentions: In order to assess relationships among the different replicon types of 103 IncF plasmids encoding variable resistance determinants, RFLP analysis was conducted which allowed visualization of variable clustering. However, our RFLP results showed diverse plasmid profiles even among identical IncF-RST groups. For instance, among 27/30 F33: A-: B- and 25/35 F2: A-: B- plasmids, 12 and 15 RFLP patterns were identified, respectively. In addition, antimicrobial susceptibility, plasmid size and antimicrobial resistance genes varied (Figures 1–3).


IncF plasmid diversity in multi-drug resistant Escherichia coli strains from animals in China.

Yang QE, Sun J, Li L, Deng H, Liu BT, Fang LX, Liao XP, Liu YH - Front Microbiol (2015)

RFLP patterns and characterization of multi-resistance 27 F33: A-: B- plasmids. The scale on the top left of the figure indicates the percentage of similarity for the EcoRI restriction profiles of the IncF plasmids. aAntimicrobial for which the plasmids MICs fell within the resistant range; Antimicrobial abbreviations: A, ampicillin; S, streptomycin; M, amikacin; K, kanamycin; G, gentamycin; R, ceftriaxone; C, cefotaxime; CT, ceftiofur; N, nalidixic acid; P, ciprofloxacin; E, enrofloxacin; L, levoflox-acin; O, olaquindox; T, tetracycline; H, chloramphenicol and F, florfenicol. bPlasmids with a DSI ≥80% were assigned to the same cluster (designated with numbers 1, 2, 3, 4 etc.). Letters were used to discriminate RFLP patterns assigned to the same cluster, but differing by one or two restriction bands (i.e., 1a, 1b, 1c etc.). ND, not determined.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585273&req=5

Figure 3: RFLP patterns and characterization of multi-resistance 27 F33: A-: B- plasmids. The scale on the top left of the figure indicates the percentage of similarity for the EcoRI restriction profiles of the IncF plasmids. aAntimicrobial for which the plasmids MICs fell within the resistant range; Antimicrobial abbreviations: A, ampicillin; S, streptomycin; M, amikacin; K, kanamycin; G, gentamycin; R, ceftriaxone; C, cefotaxime; CT, ceftiofur; N, nalidixic acid; P, ciprofloxacin; E, enrofloxacin; L, levoflox-acin; O, olaquindox; T, tetracycline; H, chloramphenicol and F, florfenicol. bPlasmids with a DSI ≥80% were assigned to the same cluster (designated with numbers 1, 2, 3, 4 etc.). Letters were used to discriminate RFLP patterns assigned to the same cluster, but differing by one or two restriction bands (i.e., 1a, 1b, 1c etc.). ND, not determined.
Mentions: In order to assess relationships among the different replicon types of 103 IncF plasmids encoding variable resistance determinants, RFLP analysis was conducted which allowed visualization of variable clustering. However, our RFLP results showed diverse plasmid profiles even among identical IncF-RST groups. For instance, among 27/30 F33: A-: B- and 25/35 F2: A-: B- plasmids, 12 and 15 RFLP patterns were identified, respectively. In addition, antimicrobial susceptibility, plasmid size and antimicrobial resistance genes varied (Figures 1–3).

Bottom Line: This is the first extensive study of IncF plasmid-positive E. coli isolates from animals in China.Our results demonstrate that IncF is the most prevalent plasmid family in E. coli plasmids and they commonly carry multiple resistance determinants that render them resistant to different antibiotic classes simultaneously.IncF plasmids also harbor addiction systems, promoting their stability and maintenance in the bacterial host, under changing environmental conditions.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China.

ABSTRACT
The purpose of this study was to characterize a collection of 103 multidrug resistance IncF plasmids recovered from Escherichia coli of food producing and companion animals between 2003 and 2012. A total of 103 incF plasmids were characterized using an established PCR-based IncF replicon sequence typing (RST) system to identify FII, FIA, and FIB (FAB) groups. Plasmids were also analyzed using-restriction fragment length polymorphism (RFLP). Antibiotic Resistance determinants bla CTX-M , plasmid-mediated quinolone resistance (PMQR) genes and rmtB and plasmid addiction systems (PAS) were identified by PCR screening. A total of 20 different RSTs from 103 IncF plasmids were identified. The groups F2 and F33 with the RST formulae A-: B- were the most frequently encountered types (63.1%). The antibiotic resistance genes (ARGs) bla CTX-M , rmtB, and oqxB were carried by 82, 37, and 34 IncF plasmids, respectively. Most of these plasmids carried more than one resistance gene (59.2%, 61/103). The IncF plasmids also had a high frequency of addiction systems (mean 2.54) and two antisense RNA-regulated systems (hok-sok and srnBC) and a protein antitoxin-regulated system (pemKI) were the most prevalent. Not surprisingly, RFLP profiles among the IncF plasmids were diverse even though some shared identical IncF-RSTs. This is the first extensive study of IncF plasmid-positive E. coli isolates from animals in China. Our results demonstrate that IncF is the most prevalent plasmid family in E. coli plasmids and they commonly carry multiple resistance determinants that render them resistant to different antibiotic classes simultaneously. IncF plasmids also harbor addiction systems, promoting their stability and maintenance in the bacterial host, under changing environmental conditions.

No MeSH data available.


Related in: MedlinePlus