Limits...
Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus.

Ebrahimi Khaksefidi R, Mirlohi S, Khalaji F, Fakhari Z, Shiran B, Fallahi H, Rafiei F, Budak H, Ebrahimie E - Front Plant Sci (2015)

Bottom Line: Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower.Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress.It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University Shahrekord, Iran.

ABSTRACT
Biotic and abiotic stresses affect plant development and production through alternation of the gene expression pattern. Gene expression itself is under the control of different regulators such as miRNAs and transcription factors (TFs). MiRNAs are known to play important roles in regulation of stress responses via interacting with their target mRNAs. Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower. The expression profiles of miRNAs and their targets were comparatively analyzed between leaves and roots of plants grown under the mentioned stress conditions. Gene ontology analysis of target genes revealed that they are involved in several important pathways such as auxin and ethylene signaling, RNA mediated silencing and DNA methylation processes. Gene regulatory network highlighted the existence of cross-talks between these stress-responsive miRNAs and the other stress responsive genes in sunflower. Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress. It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

No MeSH data available.


Related in: MedlinePlus

Expression patterns of miRNAs and their target genes under cadmium stress. Plants treated with cadmium in 5 and 20 mg/L concentration. (A) Expression patterns of miRNAs in the leaf. (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585256&req=5

Figure 4: Expression patterns of miRNAs and their target genes under cadmium stress. Plants treated with cadmium in 5 and 20 mg/L concentration. (A) Expression patterns of miRNAs in the leaf. (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.

Mentions: Cadmium treatment resulted in up-regulation of all miRNAs in roots, with fold-changes between 4 and 385. The lowest and highest peaks were for miR842 in 20 mg/L and miR398 in 5 mg/L concentration of cadmium, respectively. The expression of miR426 was induced only at 5 mg/L in leaf, while in root induced at all stages of stress. The opposite pattern for miR160 and miR842 observed only at 20 mg/L in leaf tissue. The level of miR160 was drastically decreased in leaf tissue, but the expression of miR842 was slightly raised. In root tissue, their expression was increased although; the levels of miR842 at 20 mg/L were declined in comparison to 5 mg/L, where its expression was still higher compared to control. MiR403 expression was increased in both tissues whereas expression levels in root tissue were higher than leaf tissue. The highest expression of miR403 was in 5 mg/L concentration with 52-fold change compared to control. The expression pattern of miR172 was induced at all stages of treatment in both tissues with its peak at 20 mg/L concentration in root. Interestingly, the level of miR398 was up-regulated at 5 mg/L, but down-regulated at 20 mg/L with 1.6-fold change in leaf tissue. Similar trend was observed for miR167 and miR398 in root tissue, with the highest peak at 5 mg/L concentration (Table 2; Figure 4).


Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus.

Ebrahimi Khaksefidi R, Mirlohi S, Khalaji F, Fakhari Z, Shiran B, Fallahi H, Rafiei F, Budak H, Ebrahimie E - Front Plant Sci (2015)

Expression patterns of miRNAs and their target genes under cadmium stress. Plants treated with cadmium in 5 and 20 mg/L concentration. (A) Expression patterns of miRNAs in the leaf. (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585256&req=5

Figure 4: Expression patterns of miRNAs and their target genes under cadmium stress. Plants treated with cadmium in 5 and 20 mg/L concentration. (A) Expression patterns of miRNAs in the leaf. (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.
Mentions: Cadmium treatment resulted in up-regulation of all miRNAs in roots, with fold-changes between 4 and 385. The lowest and highest peaks were for miR842 in 20 mg/L and miR398 in 5 mg/L concentration of cadmium, respectively. The expression of miR426 was induced only at 5 mg/L in leaf, while in root induced at all stages of stress. The opposite pattern for miR160 and miR842 observed only at 20 mg/L in leaf tissue. The level of miR160 was drastically decreased in leaf tissue, but the expression of miR842 was slightly raised. In root tissue, their expression was increased although; the levels of miR842 at 20 mg/L were declined in comparison to 5 mg/L, where its expression was still higher compared to control. MiR403 expression was increased in both tissues whereas expression levels in root tissue were higher than leaf tissue. The highest expression of miR403 was in 5 mg/L concentration with 52-fold change compared to control. The expression pattern of miR172 was induced at all stages of treatment in both tissues with its peak at 20 mg/L concentration in root. Interestingly, the level of miR398 was up-regulated at 5 mg/L, but down-regulated at 20 mg/L with 1.6-fold change in leaf tissue. Similar trend was observed for miR167 and miR398 in root tissue, with the highest peak at 5 mg/L concentration (Table 2; Figure 4).

Bottom Line: Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower.Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress.It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University Shahrekord, Iran.

ABSTRACT
Biotic and abiotic stresses affect plant development and production through alternation of the gene expression pattern. Gene expression itself is under the control of different regulators such as miRNAs and transcription factors (TFs). MiRNAs are known to play important roles in regulation of stress responses via interacting with their target mRNAs. Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower. The expression profiles of miRNAs and their targets were comparatively analyzed between leaves and roots of plants grown under the mentioned stress conditions. Gene ontology analysis of target genes revealed that they are involved in several important pathways such as auxin and ethylene signaling, RNA mediated silencing and DNA methylation processes. Gene regulatory network highlighted the existence of cross-talks between these stress-responsive miRNAs and the other stress responsive genes in sunflower. Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress. It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

No MeSH data available.


Related in: MedlinePlus