Limits...
Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus.

Ebrahimi Khaksefidi R, Mirlohi S, Khalaji F, Fakhari Z, Shiran B, Fallahi H, Rafiei F, Budak H, Ebrahimie E - Front Plant Sci (2015)

Bottom Line: Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower.Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress.It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University Shahrekord, Iran.

ABSTRACT
Biotic and abiotic stresses affect plant development and production through alternation of the gene expression pattern. Gene expression itself is under the control of different regulators such as miRNAs and transcription factors (TFs). MiRNAs are known to play important roles in regulation of stress responses via interacting with their target mRNAs. Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower. The expression profiles of miRNAs and their targets were comparatively analyzed between leaves and roots of plants grown under the mentioned stress conditions. Gene ontology analysis of target genes revealed that they are involved in several important pathways such as auxin and ethylene signaling, RNA mediated silencing and DNA methylation processes. Gene regulatory network highlighted the existence of cross-talks between these stress-responsive miRNAs and the other stress responsive genes in sunflower. Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress. It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

No MeSH data available.


Related in: MedlinePlus

Expression patterns of miRNAs and their target genes under salt stress. Plant subjected under NaCl treatment in two concentration, 75 and 150 mM. (A) Expression patterns of miRNAs in the leaf (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585256&req=5

Figure 3: Expression patterns of miRNAs and their target genes under salt stress. Plant subjected under NaCl treatment in two concentration, 75 and 150 mM. (A) Expression patterns of miRNAs in the leaf (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.

Mentions: The expression of miR167 showed opposite pattern in both tissues. In leaves, salt stress reduced the expression of miR167 by two-fold while the expression level was up-regulated in the root tissues with a two-fold change. Interestingly, miR403 exhibited opposite pattern of expression in leaf and root, whereas its expression had increasing and declining trend in leaf and root, respectively. The expression trends of miR160, miR426 and miR842 were similar in both tissues at severe stress. Their expression showed decreasing pattern in leaf and increasing pattern in root tissue. Interestingly, an abrupt gradient was observed for miR842 in leaf tissue at 150 mM NaCl. None of the tissues disclosed a significant alteration for miR172 expression in response to salt stress. Salt stress induced the miR398 expression in both tissues with the sharp increase observed after 75 mM NaCl treatment in both tissues. In spite of this, there was a considerable reduction in its expression at 150 mM concentration in leaf and root, and the expression level was higher than control condition (Table 2; Figure 3).


Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus.

Ebrahimi Khaksefidi R, Mirlohi S, Khalaji F, Fakhari Z, Shiran B, Fallahi H, Rafiei F, Budak H, Ebrahimie E - Front Plant Sci (2015)

Expression patterns of miRNAs and their target genes under salt stress. Plant subjected under NaCl treatment in two concentration, 75 and 150 mM. (A) Expression patterns of miRNAs in the leaf (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585256&req=5

Figure 3: Expression patterns of miRNAs and their target genes under salt stress. Plant subjected under NaCl treatment in two concentration, 75 and 150 mM. (A) Expression patterns of miRNAs in the leaf (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.
Mentions: The expression of miR167 showed opposite pattern in both tissues. In leaves, salt stress reduced the expression of miR167 by two-fold while the expression level was up-regulated in the root tissues with a two-fold change. Interestingly, miR403 exhibited opposite pattern of expression in leaf and root, whereas its expression had increasing and declining trend in leaf and root, respectively. The expression trends of miR160, miR426 and miR842 were similar in both tissues at severe stress. Their expression showed decreasing pattern in leaf and increasing pattern in root tissue. Interestingly, an abrupt gradient was observed for miR842 in leaf tissue at 150 mM NaCl. None of the tissues disclosed a significant alteration for miR172 expression in response to salt stress. Salt stress induced the miR398 expression in both tissues with the sharp increase observed after 75 mM NaCl treatment in both tissues. In spite of this, there was a considerable reduction in its expression at 150 mM concentration in leaf and root, and the expression level was higher than control condition (Table 2; Figure 3).

Bottom Line: Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower.Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress.It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University Shahrekord, Iran.

ABSTRACT
Biotic and abiotic stresses affect plant development and production through alternation of the gene expression pattern. Gene expression itself is under the control of different regulators such as miRNAs and transcription factors (TFs). MiRNAs are known to play important roles in regulation of stress responses via interacting with their target mRNAs. Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower. The expression profiles of miRNAs and their targets were comparatively analyzed between leaves and roots of plants grown under the mentioned stress conditions. Gene ontology analysis of target genes revealed that they are involved in several important pathways such as auxin and ethylene signaling, RNA mediated silencing and DNA methylation processes. Gene regulatory network highlighted the existence of cross-talks between these stress-responsive miRNAs and the other stress responsive genes in sunflower. Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress. It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

No MeSH data available.


Related in: MedlinePlus