Limits...
Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus.

Ebrahimi Khaksefidi R, Mirlohi S, Khalaji F, Fakhari Z, Shiran B, Fallahi H, Rafiei F, Budak H, Ebrahimie E - Front Plant Sci (2015)

Bottom Line: Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower.Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress.It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University Shahrekord, Iran.

ABSTRACT
Biotic and abiotic stresses affect plant development and production through alternation of the gene expression pattern. Gene expression itself is under the control of different regulators such as miRNAs and transcription factors (TFs). MiRNAs are known to play important roles in regulation of stress responses via interacting with their target mRNAs. Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower. The expression profiles of miRNAs and their targets were comparatively analyzed between leaves and roots of plants grown under the mentioned stress conditions. Gene ontology analysis of target genes revealed that they are involved in several important pathways such as auxin and ethylene signaling, RNA mediated silencing and DNA methylation processes. Gene regulatory network highlighted the existence of cross-talks between these stress-responsive miRNAs and the other stress responsive genes in sunflower. Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress. It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

No MeSH data available.


Related in: MedlinePlus

Expression patterns of miRNAs and their target genes under heat stress. Plants treated at 42 ± 1°C for 1.5, 3, and 6 h. (A) Expression patterns of miRNAs in the leaf. (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585256&req=5

Figure 2: Expression patterns of miRNAs and their target genes under heat stress. Plants treated at 42 ± 1°C for 1.5, 3, and 6 h. (A) Expression patterns of miRNAs in the leaf. (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.

Mentions: The expression levels of all seven miRNAs in leaf tissue were slightly up-regulated after 1.5 h exposure to heat stress, except for miR172 which had constant expression level. However, expression of miRNAs in leaves indicated a mixed pattern at 3 and 6 h after treatment. The expression levels of miR167 and miR172 were down-regulated within a range of 2- to 3-fold at 3 and 6 h after stress. But in root tissues, their reduction was between 2 and 12 fold at these two time points. MiR398 and miR403 showed similar trend in leaf and root tissues. Their expression was immediately up-regulated in leaf at the initial time point, although, their expressions were decreased at 3 and 6 h after stress. The levels of their expression were higher than control condition. However, in root tissue, they were up-regulated at 1.5 h but down-regulated subsequently compared to control with a 2- to 8-fold change at 3 and 6 h. The miR160, miR426 and miR842 exhibited similar trend under heat stress in leaf tissue. Their expressions were induced at 1.5 h and down-regulated at 3 h and again induced at severe stress. Nevertheless, their expressions were lower compared to the control. In root tissue, except 1.5 h after stress, miR842 and miR426 showed similar pattern within a range of 4- to 38-fold change after stress. The expression of miR160 instantly decreased at 3 h (10-fold change compared to control) and its decrease continued constantly at 6 h (Table 2; Figure 2).


Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus.

Ebrahimi Khaksefidi R, Mirlohi S, Khalaji F, Fakhari Z, Shiran B, Fallahi H, Rafiei F, Budak H, Ebrahimie E - Front Plant Sci (2015)

Expression patterns of miRNAs and their target genes under heat stress. Plants treated at 42 ± 1°C for 1.5, 3, and 6 h. (A) Expression patterns of miRNAs in the leaf. (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585256&req=5

Figure 2: Expression patterns of miRNAs and their target genes under heat stress. Plants treated at 42 ± 1°C for 1.5, 3, and 6 h. (A) Expression patterns of miRNAs in the leaf. (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.
Mentions: The expression levels of all seven miRNAs in leaf tissue were slightly up-regulated after 1.5 h exposure to heat stress, except for miR172 which had constant expression level. However, expression of miRNAs in leaves indicated a mixed pattern at 3 and 6 h after treatment. The expression levels of miR167 and miR172 were down-regulated within a range of 2- to 3-fold at 3 and 6 h after stress. But in root tissues, their reduction was between 2 and 12 fold at these two time points. MiR398 and miR403 showed similar trend in leaf and root tissues. Their expression was immediately up-regulated in leaf at the initial time point, although, their expressions were decreased at 3 and 6 h after stress. The levels of their expression were higher than control condition. However, in root tissue, they were up-regulated at 1.5 h but down-regulated subsequently compared to control with a 2- to 8-fold change at 3 and 6 h. The miR160, miR426 and miR842 exhibited similar trend under heat stress in leaf tissue. Their expressions were induced at 1.5 h and down-regulated at 3 h and again induced at severe stress. Nevertheless, their expressions were lower compared to the control. In root tissue, except 1.5 h after stress, miR842 and miR426 showed similar pattern within a range of 4- to 38-fold change after stress. The expression of miR160 instantly decreased at 3 h (10-fold change compared to control) and its decrease continued constantly at 6 h (Table 2; Figure 2).

Bottom Line: Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower.Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress.It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University Shahrekord, Iran.

ABSTRACT
Biotic and abiotic stresses affect plant development and production through alternation of the gene expression pattern. Gene expression itself is under the control of different regulators such as miRNAs and transcription factors (TFs). MiRNAs are known to play important roles in regulation of stress responses via interacting with their target mRNAs. Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower. The expression profiles of miRNAs and their targets were comparatively analyzed between leaves and roots of plants grown under the mentioned stress conditions. Gene ontology analysis of target genes revealed that they are involved in several important pathways such as auxin and ethylene signaling, RNA mediated silencing and DNA methylation processes. Gene regulatory network highlighted the existence of cross-talks between these stress-responsive miRNAs and the other stress responsive genes in sunflower. Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress. It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

No MeSH data available.


Related in: MedlinePlus