Limits...
Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus.

Ebrahimi Khaksefidi R, Mirlohi S, Khalaji F, Fakhari Z, Shiran B, Fallahi H, Rafiei F, Budak H, Ebrahimie E - Front Plant Sci (2015)

Bottom Line: Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower.Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress.It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University Shahrekord, Iran.

ABSTRACT
Biotic and abiotic stresses affect plant development and production through alternation of the gene expression pattern. Gene expression itself is under the control of different regulators such as miRNAs and transcription factors (TFs). MiRNAs are known to play important roles in regulation of stress responses via interacting with their target mRNAs. Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower. The expression profiles of miRNAs and their targets were comparatively analyzed between leaves and roots of plants grown under the mentioned stress conditions. Gene ontology analysis of target genes revealed that they are involved in several important pathways such as auxin and ethylene signaling, RNA mediated silencing and DNA methylation processes. Gene regulatory network highlighted the existence of cross-talks between these stress-responsive miRNAs and the other stress responsive genes in sunflower. Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress. It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

No MeSH data available.


Related in: MedlinePlus

Expression patterns of miRNAs and their target genes under drought stress. Sunflower seedling at the six leaf stages grew on soil (¾ river sand and ¼ soil) under normal conditions and leaves and roots of them were harvested as control then they treated by withholding the water for 12, 24 and 48 h. (A) Expression patterns of miRNAs in the leaf. (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585256&req=5

Figure 1: Expression patterns of miRNAs and their target genes under drought stress. Sunflower seedling at the six leaf stages grew on soil (¾ river sand and ¼ soil) under normal conditions and leaves and roots of them were harvested as control then they treated by withholding the water for 12, 24 and 48 h. (A) Expression patterns of miRNAs in the leaf. (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.

Mentions: MiRNAs expression levels were significantly down-regulated (P < 0.05) in leaves of plants grown under drought stress with the lowest expression levels were at 48 h (except miR403). MiR172 expression modulation was not significant (P < 0.05) in all period of stress in root tissue. The expression patterns of miR160, miR426 and miR842 were similar in both tissues, except miR160 which showed opposite pattern at 48 h after drought stress in root tissue. The miRNAs, miR167 and miR398 showed similar trend under drought stress in both tissues. They were down-regulated at all-time points within range of 2- to 19-fold change, whereas expression of miR167 was slightly up-regulated at 48 h compared to moderate stress in root tissue. MiR403 showed the opposite pattern in leaf and root tissues at 24 h. Its expression abruptly decreased (24-fold compared to control) in leaf tissue. It, however, exhibited an increasing trend in root tissue while its expression was still lower than control condition (Table 2; Figure 1).


Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus.

Ebrahimi Khaksefidi R, Mirlohi S, Khalaji F, Fakhari Z, Shiran B, Fallahi H, Rafiei F, Budak H, Ebrahimie E - Front Plant Sci (2015)

Expression patterns of miRNAs and their target genes under drought stress. Sunflower seedling at the six leaf stages grew on soil (¾ river sand and ¼ soil) under normal conditions and leaves and roots of them were harvested as control then they treated by withholding the water for 12, 24 and 48 h. (A) Expression patterns of miRNAs in the leaf. (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585256&req=5

Figure 1: Expression patterns of miRNAs and their target genes under drought stress. Sunflower seedling at the six leaf stages grew on soil (¾ river sand and ¼ soil) under normal conditions and leaves and roots of them were harvested as control then they treated by withholding the water for 12, 24 and 48 h. (A) Expression patterns of miRNAs in the leaf. (B) Expression patterns of miRNAs in the root. (C) Expression patterns of target gene in the leaf. (D) Expression patterns of target genes in the root.
Mentions: MiRNAs expression levels were significantly down-regulated (P < 0.05) in leaves of plants grown under drought stress with the lowest expression levels were at 48 h (except miR403). MiR172 expression modulation was not significant (P < 0.05) in all period of stress in root tissue. The expression patterns of miR160, miR426 and miR842 were similar in both tissues, except miR160 which showed opposite pattern at 48 h after drought stress in root tissue. The miRNAs, miR167 and miR398 showed similar trend under drought stress in both tissues. They were down-regulated at all-time points within range of 2- to 19-fold change, whereas expression of miR167 was slightly up-regulated at 48 h compared to moderate stress in root tissue. MiR403 showed the opposite pattern in leaf and root tissues at 24 h. Its expression abruptly decreased (24-fold compared to control) in leaf tissue. It, however, exhibited an increasing trend in root tissue while its expression was still lower than control condition (Table 2; Figure 1).

Bottom Line: Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower.Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress.It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University Shahrekord, Iran.

ABSTRACT
Biotic and abiotic stresses affect plant development and production through alternation of the gene expression pattern. Gene expression itself is under the control of different regulators such as miRNAs and transcription factors (TFs). MiRNAs are known to play important roles in regulation of stress responses via interacting with their target mRNAs. Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower. The expression profiles of miRNAs and their targets were comparatively analyzed between leaves and roots of plants grown under the mentioned stress conditions. Gene ontology analysis of target genes revealed that they are involved in several important pathways such as auxin and ethylene signaling, RNA mediated silencing and DNA methylation processes. Gene regulatory network highlighted the existence of cross-talks between these stress-responsive miRNAs and the other stress responsive genes in sunflower. Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress. It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.

No MeSH data available.


Related in: MedlinePlus