Limits...
Social coordination in animal vocal interactions. Is there any evidence of turn-taking? The starling as an animal model.

Henry L, Craig AJ, Lemasson A, Hausberger M - Front Psychol (2015)

Bottom Line: Here we test the hypothesis that turn-taking and associated rules of conversations may be an adaptive response to the requirements of social life, by testing the applicability of turn-taking rules to an animal model, the European starling.These findings lead to solid bases of discussion on the evolution of communication rules in relation to social evolution.They will be discussed also in terms of processes, at the light of recent neurobiological findings.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire d'éthologie animale et humaine, Centre National de la Recherche Scientifique, UMR 6552, Université de Rennes 1 Rennes, France.

ABSTRACT
Turn-taking in conversation appears to be a common feature in various human cultures and this universality raises questions about its biological basis and evolutionary trajectory. Functional convergence is a widespread phenomenon in evolution, revealing sometimes striking functional similarities between very distant species even though the mechanisms involved may be different. Studies on mammals (including non-human primates) and bird species with different levels of social coordination reveal that temporal and structural regularities in vocal interactions may depend on the species' social structure. Here we test the hypothesis that turn-taking and associated rules of conversations may be an adaptive response to the requirements of social life, by testing the applicability of turn-taking rules to an animal model, the European starling. Birdsong has for many decades been considered as one of the best models of human language and starling songs have been well described in terms of vocal production and perception. Starlings do have vocal interactions where alternating patterns predominate. Observational and experimental data on vocal interactions reveal that (1) there are indeed clear temporal and structural regularities, (2) the temporal and structural patterning is influenced by the immediate social context, the general social situation, the individual history, and the internal state of the emitter. Comparison of phylogenetically close species of Sturnids reveals that the alternating pattern of vocal interactions varies greatly according to the species' social structure, suggesting that interactional regularities may have evolved together with social systems. These findings lead to solid bases of discussion on the evolution of communication rules in relation to social evolution. They will be discussed also in terms of processes, at the light of recent neurobiological findings.

No MeSH data available.


Song sequence of a wild starling. The typical song sequence starts with two different types of whistles (W1 and W2). The warbling sequence starts with variable motif types (M1, M2 etc…) that can be repeated several times. Click motifs (CM) appear in the middle of the sequence. High pitched trill motifs (HPT) are characteristic of the end of the sequence.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585254&req=5

Figure 1: Song sequence of a wild starling. The typical song sequence starts with two different types of whistles (W1 and W2). The warbling sequence starts with variable motif types (M1, M2 etc…) that can be repeated several times. Click motifs (CM) appear in the middle of the sequence. High pitched trill motifs (HPT) are characteristic of the end of the sequence.

Mentions: Whereas whistles can be produced independently, warbling is often preceded by whistles and it then shows a clear organization based on repetition of motif types and an increase in tempo and frequency ending with clicks and followed by high-pitched trills (Figure 1). Warbling is not used in alternating vocal interactions and is mostly sung solo in the field. Playback experiments show that the birds react to whistled structures by replying vocally while they do not respond nor change their behavior when warbling (pers. obs). The developmental course of these two categories of songs is different (Poirier et al., 2004; Bertin et al., 2007). Warbling develops progressively from subsong in the course of the bird's first year of life, whereas whistles appear suddenly during the first winter around 9 month of age (Adret-Hausberger, 1989). Moreover, young birds raised without direct contact with adults will not develop whistles but will produce warbling song (Poirier et al., 2004; Bertin et al., 2007). Finally, neuroethological as well as functional magnetic resonance imaging (fMRI) studies performed on starlings revealed that these two distinct categories of song are not processed in the same way in the brain (George et al., 2008; De Groof et al., 2013).


Social coordination in animal vocal interactions. Is there any evidence of turn-taking? The starling as an animal model.

Henry L, Craig AJ, Lemasson A, Hausberger M - Front Psychol (2015)

Song sequence of a wild starling. The typical song sequence starts with two different types of whistles (W1 and W2). The warbling sequence starts with variable motif types (M1, M2 etc…) that can be repeated several times. Click motifs (CM) appear in the middle of the sequence. High pitched trill motifs (HPT) are characteristic of the end of the sequence.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585254&req=5

Figure 1: Song sequence of a wild starling. The typical song sequence starts with two different types of whistles (W1 and W2). The warbling sequence starts with variable motif types (M1, M2 etc…) that can be repeated several times. Click motifs (CM) appear in the middle of the sequence. High pitched trill motifs (HPT) are characteristic of the end of the sequence.
Mentions: Whereas whistles can be produced independently, warbling is often preceded by whistles and it then shows a clear organization based on repetition of motif types and an increase in tempo and frequency ending with clicks and followed by high-pitched trills (Figure 1). Warbling is not used in alternating vocal interactions and is mostly sung solo in the field. Playback experiments show that the birds react to whistled structures by replying vocally while they do not respond nor change their behavior when warbling (pers. obs). The developmental course of these two categories of songs is different (Poirier et al., 2004; Bertin et al., 2007). Warbling develops progressively from subsong in the course of the bird's first year of life, whereas whistles appear suddenly during the first winter around 9 month of age (Adret-Hausberger, 1989). Moreover, young birds raised without direct contact with adults will not develop whistles but will produce warbling song (Poirier et al., 2004; Bertin et al., 2007). Finally, neuroethological as well as functional magnetic resonance imaging (fMRI) studies performed on starlings revealed that these two distinct categories of song are not processed in the same way in the brain (George et al., 2008; De Groof et al., 2013).

Bottom Line: Here we test the hypothesis that turn-taking and associated rules of conversations may be an adaptive response to the requirements of social life, by testing the applicability of turn-taking rules to an animal model, the European starling.These findings lead to solid bases of discussion on the evolution of communication rules in relation to social evolution.They will be discussed also in terms of processes, at the light of recent neurobiological findings.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire d'éthologie animale et humaine, Centre National de la Recherche Scientifique, UMR 6552, Université de Rennes 1 Rennes, France.

ABSTRACT
Turn-taking in conversation appears to be a common feature in various human cultures and this universality raises questions about its biological basis and evolutionary trajectory. Functional convergence is a widespread phenomenon in evolution, revealing sometimes striking functional similarities between very distant species even though the mechanisms involved may be different. Studies on mammals (including non-human primates) and bird species with different levels of social coordination reveal that temporal and structural regularities in vocal interactions may depend on the species' social structure. Here we test the hypothesis that turn-taking and associated rules of conversations may be an adaptive response to the requirements of social life, by testing the applicability of turn-taking rules to an animal model, the European starling. Birdsong has for many decades been considered as one of the best models of human language and starling songs have been well described in terms of vocal production and perception. Starlings do have vocal interactions where alternating patterns predominate. Observational and experimental data on vocal interactions reveal that (1) there are indeed clear temporal and structural regularities, (2) the temporal and structural patterning is influenced by the immediate social context, the general social situation, the individual history, and the internal state of the emitter. Comparison of phylogenetically close species of Sturnids reveals that the alternating pattern of vocal interactions varies greatly according to the species' social structure, suggesting that interactional regularities may have evolved together with social systems. These findings lead to solid bases of discussion on the evolution of communication rules in relation to social evolution. They will be discussed also in terms of processes, at the light of recent neurobiological findings.

No MeSH data available.