Limits...
Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions.

Meena M, Prasad V, Zehra A, Gupta VK, Upadhyay RS - Front Microbiol (2015)

Bottom Line: The metabolic pathways for mannitol biosynthesis and catabolism have been characterized in filamentous fungi by direct diminishment of fructose-6-phosphate into mannitol-1-phosphate including a mannitol-1-phosphate phosphatase catalyst.In plants mannitol is integrated from mannose-6-phosphate to mannitol-1-phosphate, which then dephosphorylates to mannitol.The enzyme mannitol dehydrogenase plays a key role in host-pathogen interactions and must be co-localized with pathogen-secreted mannitol to resist the infection.

View Article: PubMed Central - PubMed

Affiliation: Department of Botany, Banaras Hindu University Varanasi, India.

ABSTRACT
Numerous plants and fungi produce mannitol, which may serve as an osmolyte or metabolic store; furthermore, mannitol also acts as a powerful quencher of reactive oxygen species (ROS). Some phytopathogenic fungi use mannitol to stifle ROS-mediated plant resistance. Mannitol is essential in pathogenesis to balance cell reinforcements produced by both plants and animals. Mannitol likewise serves as a source of reducing power, managing coenzymes, and controlling cytoplasmic pH by going about as a sink or hotspot for protons. The metabolic pathways for mannitol biosynthesis and catabolism have been characterized in filamentous fungi by direct diminishment of fructose-6-phosphate into mannitol-1-phosphate including a mannitol-1-phosphate phosphatase catalyst. In plants mannitol is integrated from mannose-6-phosphate to mannitol-1-phosphate, which then dephosphorylates to mannitol. The enzyme mannitol dehydrogenase plays a key role in host-pathogen interactions and must be co-localized with pathogen-secreted mannitol to resist the infection.

No MeSH data available.


Related in: MedlinePlus

Mannitol biosynthesis and catabolism as proposed in higher plants. 1, mannose; 6-P isomerise; 2, mannose-6-P reductase; 3, mannitol-1-phosphate dehydrogenase (M1PDA); 4, mannitol-1-dehydrogenase; 5, hexokinase (HX; adapted and modified from Stoop et al., 1996).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585237&req=5

Figure 2: Mannitol biosynthesis and catabolism as proposed in higher plants. 1, mannose; 6-P isomerise; 2, mannose-6-P reductase; 3, mannitol-1-phosphate dehydrogenase (M1PDA); 4, mannitol-1-dehydrogenase; 5, hexokinase (HX; adapted and modified from Stoop et al., 1996).

Mentions: Figure 2 illustrates the pathways of mannitol metabolism in plants. In celery, mannitol synthesis occurs in mature leaves where M6PR is localized in the cytosol of green palisade and spongy parenchyma tissues and bundle-sheath cells (Everard et al., 1993; Loescher et al., 1995). M6PR activity is regulated by light and the development stage of the plant tissue. In mature leaves of celery, the M6PR activity is high but in sink tissues such as roots and unstressed, immature leaves, no M6PR activity is detected (Everard et al., 1993, 1997; Stoop and Pharr, 1994; Jennings et al., 2002).


Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions.

Meena M, Prasad V, Zehra A, Gupta VK, Upadhyay RS - Front Microbiol (2015)

Mannitol biosynthesis and catabolism as proposed in higher plants. 1, mannose; 6-P isomerise; 2, mannose-6-P reductase; 3, mannitol-1-phosphate dehydrogenase (M1PDA); 4, mannitol-1-dehydrogenase; 5, hexokinase (HX; adapted and modified from Stoop et al., 1996).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585237&req=5

Figure 2: Mannitol biosynthesis and catabolism as proposed in higher plants. 1, mannose; 6-P isomerise; 2, mannose-6-P reductase; 3, mannitol-1-phosphate dehydrogenase (M1PDA); 4, mannitol-1-dehydrogenase; 5, hexokinase (HX; adapted and modified from Stoop et al., 1996).
Mentions: Figure 2 illustrates the pathways of mannitol metabolism in plants. In celery, mannitol synthesis occurs in mature leaves where M6PR is localized in the cytosol of green palisade and spongy parenchyma tissues and bundle-sheath cells (Everard et al., 1993; Loescher et al., 1995). M6PR activity is regulated by light and the development stage of the plant tissue. In mature leaves of celery, the M6PR activity is high but in sink tissues such as roots and unstressed, immature leaves, no M6PR activity is detected (Everard et al., 1993, 1997; Stoop and Pharr, 1994; Jennings et al., 2002).

Bottom Line: The metabolic pathways for mannitol biosynthesis and catabolism have been characterized in filamentous fungi by direct diminishment of fructose-6-phosphate into mannitol-1-phosphate including a mannitol-1-phosphate phosphatase catalyst.In plants mannitol is integrated from mannose-6-phosphate to mannitol-1-phosphate, which then dephosphorylates to mannitol.The enzyme mannitol dehydrogenase plays a key role in host-pathogen interactions and must be co-localized with pathogen-secreted mannitol to resist the infection.

View Article: PubMed Central - PubMed

Affiliation: Department of Botany, Banaras Hindu University Varanasi, India.

ABSTRACT
Numerous plants and fungi produce mannitol, which may serve as an osmolyte or metabolic store; furthermore, mannitol also acts as a powerful quencher of reactive oxygen species (ROS). Some phytopathogenic fungi use mannitol to stifle ROS-mediated plant resistance. Mannitol is essential in pathogenesis to balance cell reinforcements produced by both plants and animals. Mannitol likewise serves as a source of reducing power, managing coenzymes, and controlling cytoplasmic pH by going about as a sink or hotspot for protons. The metabolic pathways for mannitol biosynthesis and catabolism have been characterized in filamentous fungi by direct diminishment of fructose-6-phosphate into mannitol-1-phosphate including a mannitol-1-phosphate phosphatase catalyst. In plants mannitol is integrated from mannose-6-phosphate to mannitol-1-phosphate, which then dephosphorylates to mannitol. The enzyme mannitol dehydrogenase plays a key role in host-pathogen interactions and must be co-localized with pathogen-secreted mannitol to resist the infection.

No MeSH data available.


Related in: MedlinePlus