Limits...
The impact of fire on the Late Paleozoic Earth system.

Glasspool IJ, Scott AC, Waltham D, Pronina N, Shao L - Front Plant Sci (2015)

Bottom Line: At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion.These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals.Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

View Article: PubMed Central - PubMed

Affiliation: Department of Geology, Colby College Waterville, ME, USA ; Science and Education, Field Museum of Natural History Chicago, IL, USA.

ABSTRACT
Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

No MeSH data available.


Related in: MedlinePlus

The evolution of Late Paleozoic fire systems (based partly on data from Scott and Glasspool (2006). The oxygen curves have been calculated from the inertinite in coal data (see Materials and Methods) and are based on 10 mllion year (solid black line) and 15 million year (dashed red line) binning of the data.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585212&req=5

Figure 3: The evolution of Late Paleozoic fire systems (based partly on data from Scott and Glasspool (2006). The oxygen curves have been calculated from the inertinite in coal data (see Materials and Methods) and are based on 10 mllion year (solid black line) and 15 million year (dashed red line) binning of the data.

Mentions: During the Late Paleozoic plants diversified greatly (Stewart and Rothwell, 1993; Taylor et al., 2009). As their growth forms, and range of growth environment evolved so too did the range of landscapes in which fire occurred (Scott and Glasspool, 2006). Of particular note, the authors observed that by the Carboniferous more potential fuel existed, especially through the development of extensive mires and upland vegetation, and that levels of p(O2) were elevated well above PAL, and that this combination would have led to the diversification of fire systems through this interval (Figure 3).


The impact of fire on the Late Paleozoic Earth system.

Glasspool IJ, Scott AC, Waltham D, Pronina N, Shao L - Front Plant Sci (2015)

The evolution of Late Paleozoic fire systems (based partly on data from Scott and Glasspool (2006). The oxygen curves have been calculated from the inertinite in coal data (see Materials and Methods) and are based on 10 mllion year (solid black line) and 15 million year (dashed red line) binning of the data.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585212&req=5

Figure 3: The evolution of Late Paleozoic fire systems (based partly on data from Scott and Glasspool (2006). The oxygen curves have been calculated from the inertinite in coal data (see Materials and Methods) and are based on 10 mllion year (solid black line) and 15 million year (dashed red line) binning of the data.
Mentions: During the Late Paleozoic plants diversified greatly (Stewart and Rothwell, 1993; Taylor et al., 2009). As their growth forms, and range of growth environment evolved so too did the range of landscapes in which fire occurred (Scott and Glasspool, 2006). Of particular note, the authors observed that by the Carboniferous more potential fuel existed, especially through the development of extensive mires and upland vegetation, and that levels of p(O2) were elevated well above PAL, and that this combination would have led to the diversification of fire systems through this interval (Figure 3).

Bottom Line: At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion.These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals.Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

View Article: PubMed Central - PubMed

Affiliation: Department of Geology, Colby College Waterville, ME, USA ; Science and Education, Field Museum of Natural History Chicago, IL, USA.

ABSTRACT
Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

No MeSH data available.


Related in: MedlinePlus