Limits...
The impact of fire on the Late Paleozoic Earth system.

Glasspool IJ, Scott AC, Waltham D, Pronina N, Shao L - Front Plant Sci (2015)

Bottom Line: At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion.These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals.Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

View Article: PubMed Central - PubMed

Affiliation: Department of Geology, Colby College Waterville, ME, USA ; Science and Education, Field Museum of Natural History Chicago, IL, USA.

ABSTRACT
Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

No MeSH data available.


Related in: MedlinePlus

The distribution of inertinite (charcoal) in coal. Based on data from Glasspool and Scott (2010) with additional data added. The raw inertinite data are presented up to 240 Mya. Crosses, data binned to 15 million years. Circles, data binned to 10 million years. Dashed red line, average inertinite data binned by 15 million year intervals. Solid black line, average inertinite data binned by 10 million year intervals.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585212&req=5

Figure 1: The distribution of inertinite (charcoal) in coal. Based on data from Glasspool and Scott (2010) with additional data added. The raw inertinite data are presented up to 240 Mya. Crosses, data binned to 15 million years. Circles, data binned to 10 million years. Dashed red line, average inertinite data binned by 15 million year intervals. Solid black line, average inertinite data binned by 10 million year intervals.

Mentions: Maceral data from the literature, used to determine Inert% (charcoal in coal) were only included in this analysis where the inclusion/exclusion of mineral matter was clear. These data were then aggregated into both 10- and 15-million year binning intervals and averaged (Supplementary Table S2; Figure 1). It should be noted that binning the data can present some apparent anomalies, especially when data are compared graphically with an absolute chronostratigraphic framework, e.g., latest Permian inertinite data bin at 250 million years, an apparently earliest Triassic age. With two exceptions, coals whose stratigraphic resolution was greater than 15 million years were excluded (e.g., Taiyuan Formation = Kasimovian–Sakmarian). The two exceptions included in the database derive from poorly sampled stratigraphic intervals where they represent the only data: Givetian–Frasnian (Weatherall–Hecla Bay–Beverley Inlet formations) and the Anisian–Carnian (Basin Creek and Mungaroo formations). Where not tabulated or stated in the text, data were measured from graphics by pasting the image into Corel-Draw and overlaying guidelines to obtain exact measurements of data point positions. Preference was given to literature citing named seams. Where multiple references provide data from one seam, this data was averaged and all references cited.


The impact of fire on the Late Paleozoic Earth system.

Glasspool IJ, Scott AC, Waltham D, Pronina N, Shao L - Front Plant Sci (2015)

The distribution of inertinite (charcoal) in coal. Based on data from Glasspool and Scott (2010) with additional data added. The raw inertinite data are presented up to 240 Mya. Crosses, data binned to 15 million years. Circles, data binned to 10 million years. Dashed red line, average inertinite data binned by 15 million year intervals. Solid black line, average inertinite data binned by 10 million year intervals.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585212&req=5

Figure 1: The distribution of inertinite (charcoal) in coal. Based on data from Glasspool and Scott (2010) with additional data added. The raw inertinite data are presented up to 240 Mya. Crosses, data binned to 15 million years. Circles, data binned to 10 million years. Dashed red line, average inertinite data binned by 15 million year intervals. Solid black line, average inertinite data binned by 10 million year intervals.
Mentions: Maceral data from the literature, used to determine Inert% (charcoal in coal) were only included in this analysis where the inclusion/exclusion of mineral matter was clear. These data were then aggregated into both 10- and 15-million year binning intervals and averaged (Supplementary Table S2; Figure 1). It should be noted that binning the data can present some apparent anomalies, especially when data are compared graphically with an absolute chronostratigraphic framework, e.g., latest Permian inertinite data bin at 250 million years, an apparently earliest Triassic age. With two exceptions, coals whose stratigraphic resolution was greater than 15 million years were excluded (e.g., Taiyuan Formation = Kasimovian–Sakmarian). The two exceptions included in the database derive from poorly sampled stratigraphic intervals where they represent the only data: Givetian–Frasnian (Weatherall–Hecla Bay–Beverley Inlet formations) and the Anisian–Carnian (Basin Creek and Mungaroo formations). Where not tabulated or stated in the text, data were measured from graphics by pasting the image into Corel-Draw and overlaying guidelines to obtain exact measurements of data point positions. Preference was given to literature citing named seams. Where multiple references provide data from one seam, this data was averaged and all references cited.

Bottom Line: At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion.These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals.Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

View Article: PubMed Central - PubMed

Affiliation: Department of Geology, Colby College Waterville, ME, USA ; Science and Education, Field Museum of Natural History Chicago, IL, USA.

ABSTRACT
Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

No MeSH data available.


Related in: MedlinePlus