Limits...
A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions.

Nesler A, Perazzolli M, Puopolo G, Giovannini O, Elad Y, Pertot I - Front Plant Sci (2015)

Bottom Line: Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels.Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures.NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

View Article: PubMed Central - PubMed

Affiliation: Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy.

ABSTRACT
Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB), against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

No MeSH data available.


Related in: MedlinePlus

Effect of nutrient broth against powdery mildew on zucchini plants under greenhouse conditions. Powdery mildew severity were evaluated on zucchini plants treated with nutrient broth (NB) or water (Control). Treatments were sprayed to both surfaces of each leaf (Full treatment), to the abaxial surface of each leaf (Abaxial treatment) or to the first four basal leaves (Basal treatment). Disease severity was assessed as the percentage of adaxial leaf area covered by white sporulation 14 days post-inoculation. Global and translaminar effect was calculated on all leaves of full and abaxial treatment, respectively. For basal treatment, scores of treated basal (Local effect) and untreated apical (Systemic effect) leaves were analyzed separately. F-test revealed non-significant differences between experiments (P > 0.05) and data from two experimental repetitions were pooled. The mean severity and standard error values of eight replicates (potted plants) of two experiments are presented for each treatment. For each treatment, asterisks indicate significant differences between NB-treated and control plants according to t-test (α = 0.05)
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585195&req=5

Figure 3: Effect of nutrient broth against powdery mildew on zucchini plants under greenhouse conditions. Powdery mildew severity were evaluated on zucchini plants treated with nutrient broth (NB) or water (Control). Treatments were sprayed to both surfaces of each leaf (Full treatment), to the abaxial surface of each leaf (Abaxial treatment) or to the first four basal leaves (Basal treatment). Disease severity was assessed as the percentage of adaxial leaf area covered by white sporulation 14 days post-inoculation. Global and translaminar effect was calculated on all leaves of full and abaxial treatment, respectively. For basal treatment, scores of treated basal (Local effect) and untreated apical (Systemic effect) leaves were analyzed separately. F-test revealed non-significant differences between experiments (P > 0.05) and data from two experimental repetitions were pooled. The mean severity and standard error values of eight replicates (potted plants) of two experiments are presented for each treatment. For each treatment, asterisks indicate significant differences between NB-treated and control plants according to t-test (α = 0.05)

Mentions: Foliar applications of NB on leaves of zucchini plants significantly reduced powdery mildew symptoms (Figure 3). NB applied to the first four basal leaves reduced disease symptoms on untreated apical leaves, demonstrating the activation of systemic resistance. Likewise, NB treatment of the abaxial leaf surface significantly reduced powdery mildew symptoms on the adaxial surface, demonstrating a translaminar effect.


A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions.

Nesler A, Perazzolli M, Puopolo G, Giovannini O, Elad Y, Pertot I - Front Plant Sci (2015)

Effect of nutrient broth against powdery mildew on zucchini plants under greenhouse conditions. Powdery mildew severity were evaluated on zucchini plants treated with nutrient broth (NB) or water (Control). Treatments were sprayed to both surfaces of each leaf (Full treatment), to the abaxial surface of each leaf (Abaxial treatment) or to the first four basal leaves (Basal treatment). Disease severity was assessed as the percentage of adaxial leaf area covered by white sporulation 14 days post-inoculation. Global and translaminar effect was calculated on all leaves of full and abaxial treatment, respectively. For basal treatment, scores of treated basal (Local effect) and untreated apical (Systemic effect) leaves were analyzed separately. F-test revealed non-significant differences between experiments (P > 0.05) and data from two experimental repetitions were pooled. The mean severity and standard error values of eight replicates (potted plants) of two experiments are presented for each treatment. For each treatment, asterisks indicate significant differences between NB-treated and control plants according to t-test (α = 0.05)
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585195&req=5

Figure 3: Effect of nutrient broth against powdery mildew on zucchini plants under greenhouse conditions. Powdery mildew severity were evaluated on zucchini plants treated with nutrient broth (NB) or water (Control). Treatments were sprayed to both surfaces of each leaf (Full treatment), to the abaxial surface of each leaf (Abaxial treatment) or to the first four basal leaves (Basal treatment). Disease severity was assessed as the percentage of adaxial leaf area covered by white sporulation 14 days post-inoculation. Global and translaminar effect was calculated on all leaves of full and abaxial treatment, respectively. For basal treatment, scores of treated basal (Local effect) and untreated apical (Systemic effect) leaves were analyzed separately. F-test revealed non-significant differences between experiments (P > 0.05) and data from two experimental repetitions were pooled. The mean severity and standard error values of eight replicates (potted plants) of two experiments are presented for each treatment. For each treatment, asterisks indicate significant differences between NB-treated and control plants according to t-test (α = 0.05)
Mentions: Foliar applications of NB on leaves of zucchini plants significantly reduced powdery mildew symptoms (Figure 3). NB applied to the first four basal leaves reduced disease symptoms on untreated apical leaves, demonstrating the activation of systemic resistance. Likewise, NB treatment of the abaxial leaf surface significantly reduced powdery mildew symptoms on the adaxial surface, demonstrating a translaminar effect.

Bottom Line: Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels.Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures.NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

View Article: PubMed Central - PubMed

Affiliation: Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy.

ABSTRACT
Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB), against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

No MeSH data available.


Related in: MedlinePlus