Limits...
Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.).

Zhang L, Zhao HK, Dong QL, Zhang YY, Wang YM, Li HY, Xing GJ, Li QY, Dong YS - Front Plant Sci (2015)

Bottom Line: Furthermore, the expression of some of the duplicate genes was partially redundant, while others showed functional diversity.The quantitative real-time PCR (qRT-PCR) analysis of the 61 soybean HSP70 genes confirmed their stress-inducible expression patterns under both drought and heat stress.These findings provide a thorough overview of the evolution and modification of the GmHSP70 gene family, which will help to determine the functional characteristics of the HSP70 genes in soybean growth and development.

View Article: PubMed Central - PubMed

Affiliation: Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences Changchun, China.

ABSTRACT
Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Previous studies have made great efforts in the functional analysis of individual family members, but there has not yet been an overall analysis or expression profiling of the HSP70 gene family in soybeans (Glycine max L.). In this study, an investigation of the soybean genome revealed 61 putative HSP70 genes, which were evaluated. These genes were classified into eight sub-families, denoted I-VIII, based on a phylogenetic analysis. In each sub-family, the constituent parts of the gene structure and motif were relatively conserved. These GmHSP70 genes were distributed unequally on 17 of the 20 chromosomes. The analysis of the expression profiles showed that 53 of the 61 GmHSP70 genes were differentially expressed across the 14 tissues. However, most of the GmHSP70s were differentially expressed in a tissue-specific expression pattern. Furthermore, the expression of some of the duplicate genes was partially redundant, while others showed functional diversity. The quantitative real-time PCR (qRT-PCR) analysis of the 61 soybean HSP70 genes confirmed their stress-inducible expression patterns under both drought and heat stress. These findings provide a thorough overview of the evolution and modification of the GmHSP70 gene family, which will help to determine the functional characteristics of the HSP70 genes in soybean growth and development.

No MeSH data available.


Related in: MedlinePlus

Chromosomal map and duplication event coordinates of paralogous GmHSP70 gene candidates. The identity of each linkage group is indicated at the top of each bar. Only the chromosomes where GmHSP70 genes were mapped are shown. Possible duplicated genes are connected by different color lines. The bar located on the left side indicates chromosome sizes in megabases. The scale represents the length of the chromosome.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585176&req=5

Figure 3: Chromosomal map and duplication event coordinates of paralogous GmHSP70 gene candidates. The identity of each linkage group is indicated at the top of each bar. Only the chromosomes where GmHSP70 genes were mapped are shown. Possible duplicated genes are connected by different color lines. The bar located on the left side indicates chromosome sizes in megabases. The scale represents the length of the chromosome.

Mentions: The 61 putative GmHSP70 gene candidates were distributed across 17 of the 20 chromosomes in the soybean genome. Among them, chromosome 18 had the highest density of GmHSP70 genes, with 10 members; chromosome 13 had the next highest density, with eight genes; five GmHSP70 genes were located in each of chromosomes 2, 7, 8, and 15; four GmHSP70 genes were situated in chromosomes 5 and 11; three GmHSP70 genes were positioned in chromosomes 3 and 17; two genes each were found in chromosomes 12 and 19; only one gene was found in each of chromosomes 1, 6, 14, 16, and 20; and no GmHSP70 genes were detected in chromosome 3, 9, or 10 (Figure 3). We also investigated the gene duplication events of the GmHSP70 family, and the results showed that there were 24 sister pairs in the 61 GmHSP70 genes (Additional File 10). Only one pair of paralogous genes (Glyma03g17870 and Glyma18g13077) did not reach this standard. The other 23 paralog pairs were all fitted for duplications of the HSP70 genes. Four of the 23 GmHSP70 paralog gene pairs were detected within a distance of less than 5 kb (>100 kb) on chromosomes 11, 13, and 18, which were identified as tandem duplications. The other 19-paralog gene pairs were segmental duplications. These results suggest that segmental duplication played a crucial role in the expansion of the HSP70 gene family in soybeans.


Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.).

Zhang L, Zhao HK, Dong QL, Zhang YY, Wang YM, Li HY, Xing GJ, Li QY, Dong YS - Front Plant Sci (2015)

Chromosomal map and duplication event coordinates of paralogous GmHSP70 gene candidates. The identity of each linkage group is indicated at the top of each bar. Only the chromosomes where GmHSP70 genes were mapped are shown. Possible duplicated genes are connected by different color lines. The bar located on the left side indicates chromosome sizes in megabases. The scale represents the length of the chromosome.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585176&req=5

Figure 3: Chromosomal map and duplication event coordinates of paralogous GmHSP70 gene candidates. The identity of each linkage group is indicated at the top of each bar. Only the chromosomes where GmHSP70 genes were mapped are shown. Possible duplicated genes are connected by different color lines. The bar located on the left side indicates chromosome sizes in megabases. The scale represents the length of the chromosome.
Mentions: The 61 putative GmHSP70 gene candidates were distributed across 17 of the 20 chromosomes in the soybean genome. Among them, chromosome 18 had the highest density of GmHSP70 genes, with 10 members; chromosome 13 had the next highest density, with eight genes; five GmHSP70 genes were located in each of chromosomes 2, 7, 8, and 15; four GmHSP70 genes were situated in chromosomes 5 and 11; three GmHSP70 genes were positioned in chromosomes 3 and 17; two genes each were found in chromosomes 12 and 19; only one gene was found in each of chromosomes 1, 6, 14, 16, and 20; and no GmHSP70 genes were detected in chromosome 3, 9, or 10 (Figure 3). We also investigated the gene duplication events of the GmHSP70 family, and the results showed that there were 24 sister pairs in the 61 GmHSP70 genes (Additional File 10). Only one pair of paralogous genes (Glyma03g17870 and Glyma18g13077) did not reach this standard. The other 23 paralog pairs were all fitted for duplications of the HSP70 genes. Four of the 23 GmHSP70 paralog gene pairs were detected within a distance of less than 5 kb (>100 kb) on chromosomes 11, 13, and 18, which were identified as tandem duplications. The other 19-paralog gene pairs were segmental duplications. These results suggest that segmental duplication played a crucial role in the expansion of the HSP70 gene family in soybeans.

Bottom Line: Furthermore, the expression of some of the duplicate genes was partially redundant, while others showed functional diversity.The quantitative real-time PCR (qRT-PCR) analysis of the 61 soybean HSP70 genes confirmed their stress-inducible expression patterns under both drought and heat stress.These findings provide a thorough overview of the evolution and modification of the GmHSP70 gene family, which will help to determine the functional characteristics of the HSP70 genes in soybean growth and development.

View Article: PubMed Central - PubMed

Affiliation: Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences Changchun, China.

ABSTRACT
Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Previous studies have made great efforts in the functional analysis of individual family members, but there has not yet been an overall analysis or expression profiling of the HSP70 gene family in soybeans (Glycine max L.). In this study, an investigation of the soybean genome revealed 61 putative HSP70 genes, which were evaluated. These genes were classified into eight sub-families, denoted I-VIII, based on a phylogenetic analysis. In each sub-family, the constituent parts of the gene structure and motif were relatively conserved. These GmHSP70 genes were distributed unequally on 17 of the 20 chromosomes. The analysis of the expression profiles showed that 53 of the 61 GmHSP70 genes were differentially expressed across the 14 tissues. However, most of the GmHSP70s were differentially expressed in a tissue-specific expression pattern. Furthermore, the expression of some of the duplicate genes was partially redundant, while others showed functional diversity. The quantitative real-time PCR (qRT-PCR) analysis of the 61 soybean HSP70 genes confirmed their stress-inducible expression patterns under both drought and heat stress. These findings provide a thorough overview of the evolution and modification of the GmHSP70 gene family, which will help to determine the functional characteristics of the HSP70 genes in soybean growth and development.

No MeSH data available.


Related in: MedlinePlus