Limits...
Interaction of fibrinogen and muramidase-released protein promotes the development of Streptococcus suis meningitis.

Wang J, Kong D, Zhang S, Jiang H, Zheng Y, Zang Y, Hao H, Jiang Y - Front Microbiol (2015)

Bottom Line: Muramidase-released protein (MRP) is as an important virulence marker of Streptococcus suis (S. suis) serotype 2.In this study, we found that the deletion of mrp significantly impairs the hFg-mediated adherence and traversal ability of S. suis across human cerebral microvascular endothelial cells (hCMEC/D3).Measurement of the permeability to Lucifer yellow in vitro and Evans blue extravasation in vivo show that the MRP-hFg interaction significantly increases the permeability of the blood-brain barrier (BBB).

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China ; Urumqi Ethnic Cadres' College , Urumqi, China.

ABSTRACT
Muramidase-released protein (MRP) is as an important virulence marker of Streptococcus suis (S. suis) serotype 2. Our previous works have shown that MRP can bind human fibrinogen (hFg); however, the function of this interaction in S. suis meningitis is not known. In this study, we found that the deletion of mrp significantly impairs the hFg-mediated adherence and traversal ability of S. suis across human cerebral microvascular endothelial cells (hCMEC/D3). Measurement of the permeability to Lucifer yellow in vitro and Evans blue extravasation in vivo show that the MRP-hFg interaction significantly increases the permeability of the blood-brain barrier (BBB). In the mouse meningitis model, wild type S. suis caused higher bacterial loads in the brain and more severe histopathological signs of meningitis than the mrp mutant at day 3 post-infection. Western blot analysis and immunofluorescence observations reveal that the MRP-hFg interaction can destroy the cell adherens junction protein p120-catenin of hCMEC/D3. These results indicate that the MRP-hFg interaction is important in the development of S. suis meningitis.

No MeSH data available.


Related in: MedlinePlus

MRP-Fg interaction can destroy p120-catenin of hCMEC/D3. HCMEC/D3 cell monolayers were challenged with Fg pretreated S. suis 05ZYH33 or 05ZYH33Δmrp for the indicated time and the amount of p120-catenin was detected by western blot (A) or by staining for p120-catenin at 25 min post infection (B). Although we show cropped blots, the gels were run under the same experimental conditions.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585153&req=5

Figure 5: MRP-Fg interaction can destroy p120-catenin of hCMEC/D3. HCMEC/D3 cell monolayers were challenged with Fg pretreated S. suis 05ZYH33 or 05ZYH33Δmrp for the indicated time and the amount of p120-catenin was detected by western blot (A) or by staining for p120-catenin at 25 min post infection (B). Although we show cropped blots, the gels were run under the same experimental conditions.

Mentions: The above results indicate that the interaction of MRP with Fg contributes to the development of S. suis meningitis by increasing the permeability of the BBB. Since the tightness of endothelial cells is mainly controlled by vascular endothelial cadherin and claudin-5, we supposed that this interaction might contribute to change the endothelial cell junctions during the S. suis infection. To test this hypothesis, we detected the endothelial cell junction proteins of the hCMEC/D3 cell monolayer challenged with Fg-pretreated S. suis by western blot. S. suis infection could cause a decrease of claudin-5, ZO-1, ZO-2, and VE-cadherin 6 h post-infection, but we observed no significant difference between S. suis 05ZYH33 and 05ZYH33Δmrp infection (data not shown). However, Fg-pretreated S. suis 05ZYH33 caused a dramatic decrease of p120-catenin at 25 min post infection, while Fg-pretreated S. suis 05ZYH33Δmrp caused a slight increase of p120-catenin at 25 min post-infection (Figure 5A). Immunofluorescence microscopy also showed that compared to untreated cells, Fg-pretreated S. suis 05ZYH33 infection caused a marked decrease in the amount of p120-catenin on the surface of hCMEC/D3 cells, while Fg-pretreated S. suis 05ZYH33Δmrp had no significant change in p120-catenin (Figure 5B). These results indicate that binding of MRP to Fg could destroy the stability of p120-catenin, which might contribute to the increased permeability of the BBB.


Interaction of fibrinogen and muramidase-released protein promotes the development of Streptococcus suis meningitis.

Wang J, Kong D, Zhang S, Jiang H, Zheng Y, Zang Y, Hao H, Jiang Y - Front Microbiol (2015)

MRP-Fg interaction can destroy p120-catenin of hCMEC/D3. HCMEC/D3 cell monolayers were challenged with Fg pretreated S. suis 05ZYH33 or 05ZYH33Δmrp for the indicated time and the amount of p120-catenin was detected by western blot (A) or by staining for p120-catenin at 25 min post infection (B). Although we show cropped blots, the gels were run under the same experimental conditions.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585153&req=5

Figure 5: MRP-Fg interaction can destroy p120-catenin of hCMEC/D3. HCMEC/D3 cell monolayers were challenged with Fg pretreated S. suis 05ZYH33 or 05ZYH33Δmrp for the indicated time and the amount of p120-catenin was detected by western blot (A) or by staining for p120-catenin at 25 min post infection (B). Although we show cropped blots, the gels were run under the same experimental conditions.
Mentions: The above results indicate that the interaction of MRP with Fg contributes to the development of S. suis meningitis by increasing the permeability of the BBB. Since the tightness of endothelial cells is mainly controlled by vascular endothelial cadherin and claudin-5, we supposed that this interaction might contribute to change the endothelial cell junctions during the S. suis infection. To test this hypothesis, we detected the endothelial cell junction proteins of the hCMEC/D3 cell monolayer challenged with Fg-pretreated S. suis by western blot. S. suis infection could cause a decrease of claudin-5, ZO-1, ZO-2, and VE-cadherin 6 h post-infection, but we observed no significant difference between S. suis 05ZYH33 and 05ZYH33Δmrp infection (data not shown). However, Fg-pretreated S. suis 05ZYH33 caused a dramatic decrease of p120-catenin at 25 min post infection, while Fg-pretreated S. suis 05ZYH33Δmrp caused a slight increase of p120-catenin at 25 min post-infection (Figure 5A). Immunofluorescence microscopy also showed that compared to untreated cells, Fg-pretreated S. suis 05ZYH33 infection caused a marked decrease in the amount of p120-catenin on the surface of hCMEC/D3 cells, while Fg-pretreated S. suis 05ZYH33Δmrp had no significant change in p120-catenin (Figure 5B). These results indicate that binding of MRP to Fg could destroy the stability of p120-catenin, which might contribute to the increased permeability of the BBB.

Bottom Line: Muramidase-released protein (MRP) is as an important virulence marker of Streptococcus suis (S. suis) serotype 2.In this study, we found that the deletion of mrp significantly impairs the hFg-mediated adherence and traversal ability of S. suis across human cerebral microvascular endothelial cells (hCMEC/D3).Measurement of the permeability to Lucifer yellow in vitro and Evans blue extravasation in vivo show that the MRP-hFg interaction significantly increases the permeability of the blood-brain barrier (BBB).

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China ; Urumqi Ethnic Cadres' College , Urumqi, China.

ABSTRACT
Muramidase-released protein (MRP) is as an important virulence marker of Streptococcus suis (S. suis) serotype 2. Our previous works have shown that MRP can bind human fibrinogen (hFg); however, the function of this interaction in S. suis meningitis is not known. In this study, we found that the deletion of mrp significantly impairs the hFg-mediated adherence and traversal ability of S. suis across human cerebral microvascular endothelial cells (hCMEC/D3). Measurement of the permeability to Lucifer yellow in vitro and Evans blue extravasation in vivo show that the MRP-hFg interaction significantly increases the permeability of the blood-brain barrier (BBB). In the mouse meningitis model, wild type S. suis caused higher bacterial loads in the brain and more severe histopathological signs of meningitis than the mrp mutant at day 3 post-infection. Western blot analysis and immunofluorescence observations reveal that the MRP-hFg interaction can destroy the cell adherens junction protein p120-catenin of hCMEC/D3. These results indicate that the MRP-hFg interaction is important in the development of S. suis meningitis.

No MeSH data available.


Related in: MedlinePlus