Limits...
Recent advances in understanding carotenoid-derived signaling molecules in regulating plant growth and development.

Tian L - Front Plant Sci (2015)

Bottom Line: In addition, carotenoids can be processed into smaller signaling molecules that regulate various phases of the plant's life cycle.As a few excellent reviews summarized recent research on ABA and SLs, this mini review will focus on progress made on identification and characterization of the emerging carotenoid-derived signals.Overall, a better understanding of carotenoid-derived signaling molecules has immediate applications in improving plant biomass production which in turn will have far reaching impacts on providing food, feed, and fuel for the growing world population.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Sciences, University of California, Davis, Davis CA, USA.

ABSTRACT
Carotenoids (C40) are synthesized in plastids and perform numerous important functions in these organelles. In addition, carotenoids can be processed into smaller signaling molecules that regulate various phases of the plant's life cycle. Besides the relatively well-studied phytohormones abscisic acid (ABA) and strigolactones (SLs), additional carotenoid-derived signaling molecules have been discovered and shown to regulate plant growth and development. As a few excellent reviews summarized recent research on ABA and SLs, this mini review will focus on progress made on identification and characterization of the emerging carotenoid-derived signals. Overall, a better understanding of carotenoid-derived signaling molecules has immediate applications in improving plant biomass production which in turn will have far reaching impacts on providing food, feed, and fuel for the growing world population.

No MeSH data available.


Related in: MedlinePlus

Biogenetic relationships of carotenoid-derived signal molecules in Arabidopsis. Steps blocked by herbicides are indicated. Dotted arrows represent multiple reactions or unknown processes. A curved arrow indicates a regulatory relationship, not a direct chemical reaction. Mutations of the corresponding biosynthetic or regulatory genes are shown in brackets. GGPP, geranylgeranyl pyrophosphate; PSY, phytoene synthase; PDS, phytoene desaturase; Z-ISO, ζ-carotene isomerase; ZDS, ζ-carotene desaturase; CRTISO, carotenoid isomerase; LCYb, lycopene β-cyclase; LCYe, lycopene ε-cyclase; CPTA, 2-(4-chlorophenyl-thio) trimethylamine hydrochloride; BPS1 (2,3), BYPASS1 (2,3); bps1 (2,3), bypass1 (2,3); ccr1, carotenoid chloroplast regulatory1; clb5, chloroplast biogenesis5; SDG8, Set Domain Group8.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585149&req=5

Figure 1: Biogenetic relationships of carotenoid-derived signal molecules in Arabidopsis. Steps blocked by herbicides are indicated. Dotted arrows represent multiple reactions or unknown processes. A curved arrow indicates a regulatory relationship, not a direct chemical reaction. Mutations of the corresponding biosynthetic or regulatory genes are shown in brackets. GGPP, geranylgeranyl pyrophosphate; PSY, phytoene synthase; PDS, phytoene desaturase; Z-ISO, ζ-carotene isomerase; ZDS, ζ-carotene desaturase; CRTISO, carotenoid isomerase; LCYb, lycopene β-cyclase; LCYe, lycopene ε-cyclase; CPTA, 2-(4-chlorophenyl-thio) trimethylamine hydrochloride; BPS1 (2,3), BYPASS1 (2,3); bps1 (2,3), bypass1 (2,3); ccr1, carotenoid chloroplast regulatory1; clb5, chloroplast biogenesis5; SDG8, Set Domain Group8.

Mentions: About a decade ago, allelic bypass1 (bps1) mutants that lack leaf vasculature and trichomes, produce short roots and exhibit arrested shoot apical meristem (SAM) activities were isolated from ethyl methanesulfonate (EMS) mutagenized Arabidopsis grown at 16°C (Van Norman et al., 2004). The shoot and root phenotypes of bps1 were alleviated when the mutant plants were grown at higher temperatures (Van Norman et al., 2004). Through elegant genetic and biochemical analyses of the bps1 mutant and wild type plants, the Sieburth group showed that a mobile bypass (bps) signal is generated in roots of wild type Arabidopsis plants, which regulates root and shoot development through root-to-shoot signal transmission (Van Norman et al., 2004). Since application of carotenoid biosynthesis inhibitors or introduction of the pds1 mutation (containing an impaired carotenoid biosynthetic enzyme phytoene desaturase/PDS) could partially rescue the abnormal bps1 growth phenotype, it was hypothesized that bps could be a signal originated from carotenoids (Van Norman et al., 2004; Van Norman and Sieburth, 2007). Further molecular, biochemical and genetic examinations indicated that the bps signal is distinct from ABA and SLs; its production entails synthesis of β-carotene branch carotenoids but does not require the activity of a single carotenoid cleavage enzyme (9-cis-epoxycarotenoid dioxygenase/NCED or carotenoid cleavage dioxygenase/CCD) (Van Norman and Sieburth, 2007; Figure 1). Besides BYPASS1 (BPS1), two additional BPS genes (BPS2 and BPS3) were identified in Arabidopsis and the bps triple mutant (bps1bps2bps3) has aberrant cell divisions during early embryogenesis that result in defective SAM, root apical meristem (RAM), and vascular meristem (VM) (Lee et al., 2012). Such embryonic defects are not evident in bps1 and less pronounced in the bps1bps2 double mutant, suggesting that the three Arabidopsis BPS genes possess overlapping yet distinct functions in generating the bps signal (Lee et al., 2012). Analyses of the auxin response markers as well as localization and trafficking of the PIN1 auxin efflux transporter in bps mutants revealed that the auxin signaling pathway is not a primary target of the bps signal for regulation of plant development (Lee and Sieburth, 2012; Lee et al., 2012). Though the chemical structure of bps is currently unknown, progress has been made recently toward elucidation of the bps signal using a bioassay-based purification and identification scheme (Adhikari et al., 2013).


Recent advances in understanding carotenoid-derived signaling molecules in regulating plant growth and development.

Tian L - Front Plant Sci (2015)

Biogenetic relationships of carotenoid-derived signal molecules in Arabidopsis. Steps blocked by herbicides are indicated. Dotted arrows represent multiple reactions or unknown processes. A curved arrow indicates a regulatory relationship, not a direct chemical reaction. Mutations of the corresponding biosynthetic or regulatory genes are shown in brackets. GGPP, geranylgeranyl pyrophosphate; PSY, phytoene synthase; PDS, phytoene desaturase; Z-ISO, ζ-carotene isomerase; ZDS, ζ-carotene desaturase; CRTISO, carotenoid isomerase; LCYb, lycopene β-cyclase; LCYe, lycopene ε-cyclase; CPTA, 2-(4-chlorophenyl-thio) trimethylamine hydrochloride; BPS1 (2,3), BYPASS1 (2,3); bps1 (2,3), bypass1 (2,3); ccr1, carotenoid chloroplast regulatory1; clb5, chloroplast biogenesis5; SDG8, Set Domain Group8.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585149&req=5

Figure 1: Biogenetic relationships of carotenoid-derived signal molecules in Arabidopsis. Steps blocked by herbicides are indicated. Dotted arrows represent multiple reactions or unknown processes. A curved arrow indicates a regulatory relationship, not a direct chemical reaction. Mutations of the corresponding biosynthetic or regulatory genes are shown in brackets. GGPP, geranylgeranyl pyrophosphate; PSY, phytoene synthase; PDS, phytoene desaturase; Z-ISO, ζ-carotene isomerase; ZDS, ζ-carotene desaturase; CRTISO, carotenoid isomerase; LCYb, lycopene β-cyclase; LCYe, lycopene ε-cyclase; CPTA, 2-(4-chlorophenyl-thio) trimethylamine hydrochloride; BPS1 (2,3), BYPASS1 (2,3); bps1 (2,3), bypass1 (2,3); ccr1, carotenoid chloroplast regulatory1; clb5, chloroplast biogenesis5; SDG8, Set Domain Group8.
Mentions: About a decade ago, allelic bypass1 (bps1) mutants that lack leaf vasculature and trichomes, produce short roots and exhibit arrested shoot apical meristem (SAM) activities were isolated from ethyl methanesulfonate (EMS) mutagenized Arabidopsis grown at 16°C (Van Norman et al., 2004). The shoot and root phenotypes of bps1 were alleviated when the mutant plants were grown at higher temperatures (Van Norman et al., 2004). Through elegant genetic and biochemical analyses of the bps1 mutant and wild type plants, the Sieburth group showed that a mobile bypass (bps) signal is generated in roots of wild type Arabidopsis plants, which regulates root and shoot development through root-to-shoot signal transmission (Van Norman et al., 2004). Since application of carotenoid biosynthesis inhibitors or introduction of the pds1 mutation (containing an impaired carotenoid biosynthetic enzyme phytoene desaturase/PDS) could partially rescue the abnormal bps1 growth phenotype, it was hypothesized that bps could be a signal originated from carotenoids (Van Norman et al., 2004; Van Norman and Sieburth, 2007). Further molecular, biochemical and genetic examinations indicated that the bps signal is distinct from ABA and SLs; its production entails synthesis of β-carotene branch carotenoids but does not require the activity of a single carotenoid cleavage enzyme (9-cis-epoxycarotenoid dioxygenase/NCED or carotenoid cleavage dioxygenase/CCD) (Van Norman and Sieburth, 2007; Figure 1). Besides BYPASS1 (BPS1), two additional BPS genes (BPS2 and BPS3) were identified in Arabidopsis and the bps triple mutant (bps1bps2bps3) has aberrant cell divisions during early embryogenesis that result in defective SAM, root apical meristem (RAM), and vascular meristem (VM) (Lee et al., 2012). Such embryonic defects are not evident in bps1 and less pronounced in the bps1bps2 double mutant, suggesting that the three Arabidopsis BPS genes possess overlapping yet distinct functions in generating the bps signal (Lee et al., 2012). Analyses of the auxin response markers as well as localization and trafficking of the PIN1 auxin efflux transporter in bps mutants revealed that the auxin signaling pathway is not a primary target of the bps signal for regulation of plant development (Lee and Sieburth, 2012; Lee et al., 2012). Though the chemical structure of bps is currently unknown, progress has been made recently toward elucidation of the bps signal using a bioassay-based purification and identification scheme (Adhikari et al., 2013).

Bottom Line: In addition, carotenoids can be processed into smaller signaling molecules that regulate various phases of the plant's life cycle.As a few excellent reviews summarized recent research on ABA and SLs, this mini review will focus on progress made on identification and characterization of the emerging carotenoid-derived signals.Overall, a better understanding of carotenoid-derived signaling molecules has immediate applications in improving plant biomass production which in turn will have far reaching impacts on providing food, feed, and fuel for the growing world population.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Sciences, University of California, Davis, Davis CA, USA.

ABSTRACT
Carotenoids (C40) are synthesized in plastids and perform numerous important functions in these organelles. In addition, carotenoids can be processed into smaller signaling molecules that regulate various phases of the plant's life cycle. Besides the relatively well-studied phytohormones abscisic acid (ABA) and strigolactones (SLs), additional carotenoid-derived signaling molecules have been discovered and shown to regulate plant growth and development. As a few excellent reviews summarized recent research on ABA and SLs, this mini review will focus on progress made on identification and characterization of the emerging carotenoid-derived signals. Overall, a better understanding of carotenoid-derived signaling molecules has immediate applications in improving plant biomass production which in turn will have far reaching impacts on providing food, feed, and fuel for the growing world population.

No MeSH data available.


Related in: MedlinePlus